Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Hu, X. W., Wang, G. Q., and Pan, Z. H (2022). Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method. Earth Planet. Phys., 6(1), 52–60. http://doi.org/10.26464/epp2022017

2022, 6(1): 52-60. doi: 10.26464/epp2022017

SPACE PHYSICS

Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, China

Key points:
  • We propose an automatic procedure to calculate the zero offset of the space-borne FGM using the data in the solar wind.
  • The procedure can automatically select potential Alfvénic fluctuation events, obtain their optimal offset lines, and then calculate the zero offset.
  • The test results based on the Venus Express satellite data show that our method can easily and intuitively obtain the zero offset.

Corresponding author: GuoQiang Wang, wanggq@hit.edu.cn

Received Date: 2021-11-24
Web Publishing Date: 2022-01-13

The space-borne fluxgate magnetometer (FGM) requires regular in-flight calibration to obtain its zero offset. Recently, Wang GQ and Pan ZH (2021a) developed a new method for the zero offset calibration based on the properties of Alfvén waves. They found that an optimal offset line (OOL) exists in the offset cube for a pure Alfvén wave and that the zero offset can be determined by the intersection of at least two nonparallel OOLs. Because no pure Alfvén waves exist in the interplanetary magnetic field, calculation of the zero offset relies on the selection of highly Alfvénic fluctuation events. Here, we propose an automatic procedure to find highly Alfvénic fluctuations in the solar wind and calculate the zero offset. This procedure includes three parts: (1) selecting potential Alfvénic fluctuation events, (2) obtaining the OOL, and (3) determining the zero offset. We tested our automatic procedure by applying it to the magnetic field data measured by the FGM onboard the Venus Express. The tests revealed that our automatic procedure was able to achieve results as good as those determined by the Davis–Smith method. One advantage of our procedure is that the selection criteria and the process for selecting the highly Alfvénic fluctuation events are simpler. Our automatic procedure could also be applied to find fluctuation events for the Davis–Smith method.

Key words: fluxgate magnetometer, in-flight calibration, zero offset, highly Alfvénic fluctuations, automatic procedure

Acuña, M. H. (2002). Space-based magnetometers. Rev. Sci. Instrum., 73(11), 3717–3736. https://doi.org/10.1063/1.1510570

Artemyev, A. V., Angelopoulos, V., Vasko, I. Y., Runov, A., Avanov, L. A., Giles, B. L., and Russell, C. T., and Strangeway, R. J. (2019). On the kinetic nature of solar wind discontinuities. Geophys. Res. Lett., 46(3), 1185–1194. https://doi.org/10.1029/2018gl079906

Balogh, A. (2010). Planetary magnetic field measurements: missions and instrumentation. Space Sci. Rev., 152(1-4), 23–97. https://doi.org/10.1007/s11214-010-9643-1

Belcher, J. W. (1973). A variation of the Davis–Smith method for in-flight determination of spacecraft magnetic fields. J. Geophys. Res., 78(28), 6480–6490. https://doi.org/10.1029/JA078i028p06480

Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016). Magnetospheric Multiscale overview and science objectives. Space Sci. Rev., 199(1-4), 5–21. https://doi.org/10.1007/s11214-015-0164-9

Davis, L., and Smith, E. J. (1968). The in-flight determination of spacecraft magnetic field zeros. Eos, Trans. Am. Geophys. Union, 49, 257.

Duan, A. Y., Zhang, H., and Lu, H. Y. (2018). 3D MHD simulation of the double-gradient instability of the magnetotail current sheet. Sci. China Technol. Sci., 61(9), 1364–1371. https://doi.org/10.1007/s11431-017-9158-7

Ge, Y. S., McFadden, J. P., Raeder, J., Angelopoulos, V., Larson, D., and Constantinescu, O. D. (2011). Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms. J. Geophys. Res., 116(A1), A01209. https://doi.org/10.1029/2010ja015546

Hedgecock, P. C. (1975). A correlation technique for magnetometer zero level determination. Space Sci. Instrum., 1(1), 83–90.

Hellinger, P., Landi, S., Matteini, L., Verdini, A., and Franci, L. (2017). Mirror instability in the turbulent solar wind. Astrophys. J., 838(2), 158. https://doi.org/10.3847/1538-4357/aa67e0

Huang, S. Y., Sahraoui, F., Yuan, Z. G., Le Contel, O., Breuillard, H., He, J. S., Zhao, J. S., Fu, H. S., Zhou, M., … Deng, X. H. (2018). Observations of whistler waves correlated with electron-scale coherent structures in the magnetosheath turbulent plasma. Astrophys. J., 861(1), 29. https://doi.org/10.3847/1538-4357/aac831

Keiling, A. (2009). Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: A review. Space Sci. Rev., 142(1-4), 73–156. https://doi.org/10.1007/s11214-008-9463-8

Leinweber, H. K., Russell, C. T., Torkar, K., Zhang, T. L., and Angelopoulos, V. (2008). An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Meas. Sci. Technol., 19(5), 055104. https://doi.org/10.1088/0957-0233/19/5/055104

Li, H., Wang, C., Chao, J. K., and Hsieh, W. C. (2016). A new approach to identify interplanetary Alfvén waves and to obtain their frequency properties. J. Geophys. Res., 121(1), 42–55. https://doi.org/10.1002/2015ja021749

Liu, K., Hao, X. J., Li, Y. R., Zhang, T. L., Pan, Z. H., Chen, M. M., Hu, X. W., Li, X., Shen, C. L., and Wang, Y. M. (2020). Mars orbiter magnetometer of China’s first Mars mission Tianwen-1. Earth Planet. Phys., 4(4), 384–389. https://doi.org/10.26464/epp2020058

Lu, S., Wang, R. S., Lu, Q. M., Angelopoulos, V., Nakamura, R., Artemyev, A. V., Pritchett, P. L., Liu, T. Z., Zhang, X. J., … Wang, S. (2020). Magnetotail reconnection onset caused by electron kinetics with a strong external driver. Nat. Commun., 11(1), 5049. https://doi.org/10.1038/s41467-020-18787-w

Meng, L. F., Pan, Z. H., Yi, Z., Wang, G. Q., and Zhang, T. L. (2018). Error properties of the fluxgate magnetometer offset based on Davis–Smith method. Chin. J. Geophys., 61(9), 3545–3551. https://doi.org/10.6038/cjg2018L0264

Neukirch, T., Vasko, I. Y., Artemyev, A. V., and Allanson, O. (2020). Kinetic models of tangential discontinuities in the solar wind. Astrophys. J., 891(1), 86. https://doi.org/10.3847/1538-4357/ab7234

Olsen, N., Tøffner-Clausen, L., Sabaka, T. J., Brauer, P., Merayo, J. M. G., Jorgensen, J. L., Léger, J. M., Nielsen, O. V., Primdahl, F., and Risbo, T. (2003). Calibration of the Ørsted vector magnetometer. Earth Planets Space, 55(1), 11–18. https://doi.org/10.1186/Bf03352458

Pan, Z. H., Wang, G. Q., Meng, L. F., Yi, Z., and Zhang, T. L. (2019). Influence of Alfvénic characteristics on calibration of satellite magnetometer. Chin. J. Geophys., 62(4), 1193–1198. https://doi.org/10.6038/cjg2019M0513

Plaschke, F., and Narita, Y. (2016). On determining fluxgate magnetometer spin axis offsets from mirror mode observations. Ann. Geophys., 34(9), 759–766. https://doi.org/10.5194/angeo-34-759-2016

Plaschke, F., Goetz, C., Volwerk, M., Richter, I., Fruhauff, D., Narita, Y., Glassmeier, K. H., and Dougherty, M. K. (2017). Fluxgate magnetometer offset vector determination by the 3D mirror mode method. Monthly Notices of the Royal Astronomical Society, 469(Suppl_2), S675–S684. https://doi.org/10.1093/mnras/stx2532

Plaschke, F. (2019). How many solar wind data are sufficient for accurate fluxgate magnetometer offset determinations. Geosci. Instrum. Methods Data Syst., 8(2), 285–291. https://doi.org/10.5194/gi-8-285-2019

Pope, S. A., Zhang, T. L., Balikhin, M. A., Delva, M., Hvizdos, L., Kudela, K., and Dimmock, A. P. (2011). Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis. Ann. Geophys., 29(4), 639–647. https://doi.org/10.5194/angeo-29-639-2011

Pudney, M. A., Carr, C. M., Schwartz, S. J., and Howarth, S. I. (2012). Automatic parameterization for magnetometer zero offset determination. Geosci. Instrum. Methods Data Syst., 1(2), 103–109. https://doi.org/10.5194/gi-1-103-2012

Risbo, T., Brauer, P., Merayo, J. M. G., Nielsen, O. V., Petersen, J. R., Primdahl, F., and Richter, I. (2003). Ørsted pre-flight magnetometer calibration mission. Meas. Sci. Technol., 14(5), 674–688. https://doi.org/10.1088/0957-0233/14/5/319

Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., … Richter, I. (2016). The Magnetospheric Multiscale magnetometers. Space Sci. Rev., 199(1-4), 189–256. https://doi.org/10.1007/s11214-014-0057-3

Schmid, D., Plaschke, F., Narita, Y., Heyner, D., Mieth, J. Z. D., Anderson, B. J., Volwerk, M., Matsuoka, A., and Baumjohann, W. (2020). Magnetometer in-flight offset accuracy for the BepiColombo spacecraft. Ann. Geophys., 38(4), 823–832. https://doi.org/10.5194/angeo-38-823-2020

Shan, L. C. , Lu, Q. M. , Mazelle, C. , Huang, C. , Zhang, T. L. , Wu, M. Y. , Gao, X. L. , and Wang, S. (2015). The shape of the Venusian bow shock at solar minimum and maximum: revisit based on VEX observations. Planet. Space Sci. , 109–110, 32–37.

Sun, J. C., Gao, X. L., Ke, Y. G., Lu, Q. M., Wang, X. Y., and Wang, S. (2019). Expansion of solar coronal hot electrons in an inhomogeneous magnetic field: 1D PIC simulation. Astrophys. J., 887(1), 96. https://doi.org/10.3847/1538-4357/ab5060

Sun, J. C., Chen, L. J., and Wang, X. Y. (2020). Wave normal angle distribution of magnetosonic waves in the earth’s magnetosphere: 2-D PIC simulation. J. Geophys. Res., 125(5), e2020JA028012. https://doi.org/10.1029/2020ja028012

Sun, J. C., Wang, G. Q., Zhang, T. L., Hu, H. Q., and Yang, H. G. (2022). Evidence of Alfvén waves generated by mode coupling in the magnetotail lobe. Geophys. Res. Lett., 49(1), e2021GL096359. https://doi.org/10.1029/2021GL096359

Titov, D. V., Svedhem, H., Koschny, D., Hoofs, R., Barabash, S., Bertaux, J. L., Drossart, P., Formisano, V., Häusler, B., … Clochet, A. (2006). Venus Express science planning. Planet. Space Sci., 54(13-14), 1279–1297. https://doi.org/10.1016/j.pss.2006.04.017

Volwerk, M., Mautner, D., Wedlund, C. S., Goetz, C., Plaschke, F., Karlsson, T., Schmid, D., Rojas-Castillo, D., Roberts, O. W., and Varsani, A. (2021). Statistical study of linear magnetic hole structures near Earth. Ann. Geophys., 39(1), 239–253. https://doi.org/10.5194/angeo-39-239-2021

Wang, G. Q., Ge, Y. S., Zhang, T. L., Nakamura, R., Volwerk, M., Baumjohann, W., Du, A. M., and Lu, Q. M. (2015). A statistical analysis of Pi2-band waves in the plasma sheet and their relation to magnetospheric drivers. J. Geophys. Res., 120(8), 6167–6175. https://doi.org/10.1002/2014ja020753

Wang, G. Q., Zhang, T. L., and Volwerk, M. (2016). Statistical study on ultralow-frequency waves in the magnetotail lobe observed by Cluster. J. Geophys. Res., 121(6), 5319–5332. https://doi.org/10.1002/2016ja022533

Wang, G. Q., Volwerk, M., Zhang, T. L., Schmid, D., and Yoshikawa, A. (2017). High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations. J. Geophys. Res., 122(3), 2889–2899. https://doi.org/10.1002/2016ja023370

Wang, G, Q., Pan, Z. H., Hu, X. W., Liu, K., Meng, L. F., Yi, Z., and Zhang, T. L. (2019). Numerical simulation of influence of compressional fluctuation amplitude on zero correction of satellite magnetometer. Spacecr. Environ. Eng., 36(3), 229–234. https://doi.org/10.12126/see.2019.03.005

Wang, G. Q., Volwerk, M., Xiao, S. D., Wu, M. Y., Hao, Y. F., Liu, L. J., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020a). Three-dimensional geometry of the electron-scale magnetic hole in the solar wind. Astrophys. J. Lett., 904(1), L11. https://doi.org/10.3847/2041-8213/abc553

Wang, G. Q., Cheng, S. N., Meng, L. F., Yi, Z., Xiao, Q., Pan, Z. H., Hu, X. W., Liu, K., and Zhang, T. L. (2020b). Effect of reference coordinate system on the offset of fluxgate magnetometer based on Davis–Smith method. Spacecr. Environ. Eng., 37(6), 570–575. https://doi.org/10.12126/see.2020.06.006

Wang, G. Q., and Pan, Z. H. (2021a). A new method to calculate the fluxgate magnetometer offset in the interplanetary magnetic field: 1. Using Alfvén waves. J. Geophys. Res., 126(4), e2020JA028893. https://doi.org/10.1029/2020ja028893

Wang, G. Q., Volwerk, M., Wu, M. Y., Hao, Y. F., Xiao, S. D., Wang, G., Liu, L. J., Chen, Y. Q., and Zhang, T. L. (2021a). First observations of an ion vortex in a magnetic hole in the solar wind by MMS. Astron. J., 161(3), 110. https://doi.org/10.3847/1538-3881/abd632

Wang, G. Q., and Pan, Z. H. (2021b). A new method to calculate the fluxgate magnetometer offset in the interplanetary magnetic field: 2. Using mirror mode structures. J. Geophys. Res., 126(9), e2021JA029781. https://doi.org/10.1029/2021ja029781

Wang, G. Q., Zhang, T. L., Wu, M. Y., Xiao, S. D., Wang, G., Chen, Y. Q., Sun, J. C., and Volwerk, M. (2021b). Field-aligned currents originating from the chaotic motion of electrons in the tilted current sheet: MMS observations. Geophys. Res. Lett., 48(9), e2020GL088841. https://doi.org/10.1029/2020gl088841

Wu, D. J., Feng, H. Q., Li, B., and He, J. S. (2016). Nature of turbulence, dissipation, and heating in space plasmas: from Alfvén waves to kinetic Alfvén waves. J. Geophys. Res., 121(8), 7349–7352. https://doi.org/10.1002/2016ja023082

Xiao, S. D., Wu, M. Y., Wang, G. Q., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020a). Turbulence in the near-Venusian space: Venus express observations. Earth Planet. Phys., 4(1), 82–87. https://doi.org/10.26464/epp2020012

Xiao, S. D., Zhang, T. L., Vörös, Z., Wu, M. Y., Wang, G. Q., and Chen, Y. Q. (2020b). Turbulence near the Venusian bow shock: Venus Express observations. J. Geophys. Res., 125(2), e2019JA027190. https://doi.org/10.1029/2019JA027190

Zhang, T. L., Baumjohann, W., Delva, M., Auster, H. U., Balogh, A., Russell, C. T., Barabash, S., Balikhin, M., Berghofer, G., … Lebreton, J. P. (2006). Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet. Space Sci., 54(13-14), 1336–1343. https://doi.org/10.1016/j.pss.2006.04.018

Zhang, T. L., Lu, Q. M., Baumjohann, W., Russell, C. T., Fedorov, A., Barabash, S., Coates, A. J., Du, A. M., Cao, J. B., … Balikhin, M. (2012). Magnetic reconnection in the near Venusian magnetotail. Science, 336(6081), 567–570. https://doi.org/10.1126/science.1217013

[1]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[2]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[3]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[4]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[5]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[6]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[7]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[8]

A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006

[9]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics, 6, 465-473. doi: 10.26464/epp2022041

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method

XiaoWen Hu, GuoQiang Wang, ZongHao Pan