Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ma, Z. Q., Lu, G., Yang, J. F., and Zhao, L. (2022). Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton. Earth Planet. Phys., 6(2), 191–203. http://doi.org/10.26464/epp2022016

2022, 6(2): 191-203. doi: 10.26464/epp2022016

SOLID EARTH: GEODYNAMICS

Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton

1. 

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Gang Lu, lvgang@mail.iggcas.ac.cn

Received Date: 2021-10-15
Web Publishing Date: 2022-01-27

Widespread magmatism, metamorphic core complexes (MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton (NCC). It has been suggested that the coeval exhumation of MCCs with uniform northwest-southeast shear senses and magmatism probably resulted from a decratonization event during the retreat of the paleo-Pacific Plate. Here we used two-dimensional finite element thermomechanical numerical models to investigate critical parameters controlling the formation of MCCs under far-field extensional stress. We observed three end-member deformation modes: the MCC mode, the symmetric-dome mode, and the pure-shear mode. The MCC mode requires a Moho temperature of ≥700 °C and an extensional strain rate of ≥5 × 10−16 s−1, implying that the lithosphere had already thinned when the MCC was formed in the Mesozoic. Considering that the widespread MCCs have the same northwest-southeast extension direction in the NCC, we suggest that the MCCs are surface expressions of both large-scale extension and craton destruction and that rollback of the paleo-Pacific slab might be the common driving force.

Key words: metamorphic core complex, North China Craton, numerical modeling, extension

Anderson, E. M. (1951). The Dynamics of Faulting and Dyke Formation with Applications to Britain (2nd ed). Edinburgh: Oliver and Boyd.222

Axen, G. J., and Hartley, J. M. (1997). Field tests of rolling hinges: Existence, mechanical types, and implications for extensional tectonics. J. Geophys. Res.:Solid Earth, 102(B9), 20515–20537. https://doi.org/10.1029/97JB01355

Bao, X. W., Song, X. D., and Li, J. T. (2015). High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett., 417, 132–141. https://doi.org/10.1016/j.jpgl.2015.02.024

Brun, J. P. (1999). Narrow rifts versus wide rifts: Inferences for the mechanics of rifting from laboratory experiments. Philos. Trans. Roy. Soc. Lond. A:Math. Phys. Eng. Sci., 357(1753), 695–712. https://doi.org/10.1098/rsta.1999.0349

Brun, J. P., Sokoutis, D., and van den Driessche, J. (1994). Analogue modeling of detachment fault systems and core complexes. Geology, 22(4), 319–322. https://doi.org/10.1130/0091-7613(1994)022<0319:AMODFS>2.3.CO;2

Brun, J. P., Sokoutis, D., Tirel, C., Gueydan, F., van den Driessche, J., and Beslier, M. O. (2018). Crustal versus mantle core complexes. Tectonophysics, 746, 22–45. https://doi.org/10.1016/j.tecto.2017.09.017

Buck, W. R. (1991). Modes of continental lithospheric extension. J. Geophys. Res.:Solid Earth, 96(B12), 20161–20178. https://doi.org/10.1029/91JB01485

Chen, L., Zheng, T. Y., and Xu, W. W. (2006). A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J. Geophys. Res.:Solid Earth, 111(B9), B09312. https://doi.org/10.1029/2005JB003974

Chen, L. (2010). Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1-2), 96–115. https://doi.org/10.1016/j.lithos.2009.12.007

Chen, Y., Zhu, G., Jiang, D. Z., and Lin, S. Z. (2014). Deformation characteristics and formation mechanism of the Yunmengshan metamorphic core complex. Chin. Sci. Bull., 59(20), 2419–2438. https://doi.org/10.1007/s11434-014-0167-z

Coney, P. J., (1980). Cordilleran metamorphic core complexes: An overview. In M. D. Crittenden Jr., et al. (Eds.), Cordilleran Metamorphic Core Complexes (Vol. 153, pp. 7–31). Boulder: GSA.222

Coney, P. J., and Harms, T. A. (1984). Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12(9), 550–554. https://doi.org/10.1130/0091-7613(1984)12<550:CMCCCE>2.0.CO;2

Darby, B. J., Davis, G. A., Zhang, X. H., Wu, F. Y., Wilde, S., and Yang, J. H. (2004). The newly discovered Waziyu metamorphic core complex, Yiwulü Shan, western Liaoning province, Northwest China. Earth Sci. Front., 11(3), 145–156.

Davis, G. A., Darby, B. J., Zheng, Y. D., and Spell, T. L. (2002). Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology, 30(11), 1003–1006. https://doi.org/10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2

Davis, G. H., and Coney, P. J. (1979). Geologic development of the Cordilleran metamorphic core complexes. Geology, 7(3), 120–124. https://doi.org/10.1130/0091-7613(1979)7<120:GDOTCM>2.0.CO;2

Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ling, W. L., Ayers, J., Wang, X. C., and Wang, Q. H. (2004). Recycling lower continental crust in the North China craton. Nature, 432(7019), 892–897. https://doi.org/10.1038/nature03162

Gessner, K., Wijns, C., and Moresi, L. (2007). Significance of strain localization in the lower crust for structural evolution and thermal history of metamorphic core complexes. Tectonics, 26(2), TC2012. https://doi.org/10.1029/2004TC001768

Griffin, W. L., Zhang, A. D., O’Reilly, S. Y., and Ryan, C. G. (1998). Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In M. F. J. Flower, et al. (Eds.), Mantle Dynamics and Plate Interactions in East Asia (pp. 107–126). Washington, DC: American Geophysical Union.222

Hu, S. B., He, L. J., and Wang, J. Y. (2000). Heat flow in the continental area of China: A new data set. Earth Planet. Sci. Lett., 179(2), 407–419. https://doi.org/10.1016/S0012-821X(00)00126-6

Huet, B., Le Pourhiet, L., Labrousse, L., Burov, E., and Jolivet, L. (2011). Post-orogenic extension and metamorphic core complexes in a heterogeneous crust: The role of crustal layering inherited from collision. Application to the Cyclades (Aegean domain). Geophys. J. Int., 184(2), 611–625. https://doi.org/10.1111/j.1365-246X.2010.04849.x

Ji, M., Liu, J. L., Hu, L., Shen, L., and Guan, H. M. (2015). Evolving magma sources during continental lithospheric extension: Insights from the Liaonan metamorphic core complex, eastern North China craton. Tectonophysics, 647–648, 48–62.222

Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., … Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597–598, 1–33.222

Kaus, B. J. P. (2010). Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophysics, 484(1-4), 36–47. https://doi.org/10.1016/j.tecto.2009.08.042

Kaus, B. J. P., Mühlhaus, H., and May, D. A. (2010). A stabilization algorithm for geodynamic numerical simulations with a free surface. Phys. Earth Planet. Inter., 181(1-2), 12–20. https://doi.org/10.1016/j.pepi.2010.04.007

Lavier, L. L., Buck, W. R., and Poliakov, A. N. B. (1999). Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology, 27(12), 1127–1130. https://doi.org/10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2

Lavier, L. L., Buck, W. R., and Poliakov, A. N. B. (2000). Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res.:Solid Earth, 105(B10), 23431–23442. https://doi.org/10.1029/2000jb900108

Lavier, L. L., and Buck, W. R. (2002). Half graben versus large-offset low-angle normal fault: Importance of keeping cool during normal faulting. J. Geophys. Res.: Solid Earth, 107(B6), ETG 8-1-ETG 8-13.222

Le Pourhiet, L., Huet, B., May, D. A., Labrousse, L., and Jolivet, L. (2012). Kinematic interpretation of the 3D shapes of metamorphic core complexes. Geochem. Geophys. Geosyst., 13(9), Q09002. https://doi.org/10.1029/2012GC004271

Li, Y. J., Zhu, G., Su, N., Xiao, S. Y., Zhang, S., Liu, C., Xie, C. L., Yin, H., and Wu, X. D. (2020). The Xiaoqinling metamorphic core complex: A record of Early Cretaceous backarc extension along the southern part of the North China Craton. GSA Bull., 132(3-4), 617–637. https://doi.org/10.1130/B35261.1

Lin, W., and Wang, Q. C. (2006). Late Mesozoic extensional tectonics in the North China block: A crustal response to subcontinental mantle removal. Bull. Soc. geol. France, 177(6), 287–297. https://doi.org/10.2113/gssgfbull.177.6.287

Lin, W., and Wei, W. (2020). Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: A review and synthesis. Int. Geol. Rev., 62(7-8), 811–839. https://doi.org/10.1080/00206814.2018.1477073

Lister, G. S., Banga, G., and Feenstra, A. (1984). Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology, 12(4), 221–225. https://doi.org/10.1130/0091-7613(1984)12<221:MCCOCT>2.0.CO;2

Lister, G. S., and Davis, G. A. (1989). The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U. S. A. J. Struct. Geol., 11(1-2), 65–94. https://doi.org/10.1016/0191-8141(89)90036-9

Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S., and Shen, Q. H. (1992). Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4), 339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

Liu, J. L., Davis, G. A., Lin, Z. Y., and Wu, F. Y. (2005). The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China: A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2), 65–80. https://doi.org/10.1016/j.tecto.2005.07.001

Liu, J. L., Shen, L., Ji, M., Guan, H. M., Zhang, Z. C., and Zhao, Z. D. (2013). The Liaonan/Wanfu metamorphic core complexes in the Liaodong Peninsula: Two stages of exhumation and constraints on the destruction of the North China Craton. Tectonics, 32(5), 1121–1141. https://doi.org/10.1002/tect.20064

Lu, G., Zhao, L., Zheng, T. Y., Wang, K., and Yang, J. F. (2016). Determining the key conditions for the formation of metamorphic core complexes by geodynamic modeling and insights into the destruction of North China Craton. Sci. China Earth Sci., 59(9), 1873–1884. https://doi.org/10.1007/s11430-015-5407-5

Lu, G., Zhao, L., Chen, L., Wan, B. and Wu, F. Y. (2021). Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?. Earth Planet. Phys., 5(2), 123–140. https://doi.org/10.26464/epp2021014

McKenzie, D., Jackson, J., and Priestley, K. (2005). Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett., 233(3-4), 337–349. https://doi.org/10.1016/j.jpgl.2005.02.005

Menzies, M., Xu, Y. G., Zhang, H. F., and Fan, W. M. (2007). Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 96(1-2), 1–21. https://doi.org/10.1016/j.lithos.2006.09.008

Platt, J. P., Behr, W. M., and Cooper, F. J. (2015). Metamorphic core complexes: Windows into the mechanics and rheology of the crust. J. Geol. Soc., 172(1), 9–27. https://doi.org/10.1144/jgs2014-036

Püthe, C., and Gerya, T. (2014). Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res., 25(1), 270–283. https://doi.org/10.1016/j.gr.2013.04.005

Rey, P. F., Teyssier, C., and Whitney, D. L. (2009a). Extension rates, crustal melting, and core complex dynamics. Geology, 37(5), 391–394. https://doi.org/10.1130/G25460A.1

Rey, P. F., Teyssier, C., and Whitney, D. L. (2009b). The role of partial melting and extensional strain rates in the development of metamorphic core complexes. Tectonophysics, 477(3-4), 135–144. https://doi.org/10.1016/j.tecto.2009.03.010

Schellart, W. P., Stegman, D. R., and Freeman, J. (2008). Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth-Sci. Rev., 88(1-2), 118–144. https://doi.org/10.1016/j.earscirev.2008.01.005

Schenker, F. L., Gerya, T., and Burg, J. P. (2012). Bimodal behavior of extended continental lithosphere: Modeling insight and application to thermal history of migmatitic core complexes. Tectonophysics, 579, 88–103. https://doi.org/10.1016/j.tecto.2012.07.002

Schmalholz, S. M., Kaus, B. J. P., and Burg, J. P. (2009). Stress-strength relationship in the lithosphere during continental collision. Geology, 37(9), 775–778. https://doi.org/10.1130/G25678A.1

Thielmann, M., and Kaus, B. J. P. (2012). Shear heating induced lithospheric-scale localization: Does it result in subduction?. Earth Planet. Sci. Lett., 359–360, 1–13.222

Tirel, C., Brun, J. P., and Burov, E. (2004). Thermomechanical modeling of extensional gneiss domes. In D. L. Whitney, et al. (Eds.), Gneiss Domes in Orogeny (Vol. 380, pp. 67–78). Boulder: GSA.222

Tirel, C., Brun, J. P., and Sokoutis, D. (2006). Extension of thickened and hot lithospheres: Inferences from laboratory modeling. Tectonics, 25(1), TC1005. https://doi.org/10.1029/2005TC001804

Tirel, C., Brun, J. P., and Burov, E. (2008). Dynamics and structural development of metamorphic core complexes. J. Geophys. Res.:Solid Earth, 113(4), B04403. https://doi.org/10.1029/2005JB003694

Wang, H. Z., and Mo, X. X. (1995). An outline of the tectonic evolution of China. Episodes, 18(1-2), 6–16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003

Wang, K., Burov, E., Gumiaux, C., Chen, Y., Lu, G., Mezri, L., and Zhao, L. (2015). Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia). Lithos, 238, 86–100. https://doi.org/10.1016/j.lithos.2015.09.023

Wang, T., Zheng, Y. D., Zhang, J. J., Zeng, L. S., Donskaya, T., Guo, L., and Li, J. B. (2011). Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30(6), TC6007. https://doi.org/10.1029/2011TC002896

Wei, Z. G., Chen, L., Jiang, M. M., and Ling, Y. (2015). Lithospheric structure beneath the central and western North China Craton and the adjacent Qilian orogenic belt from Rayleigh wave dispersion analysis. Tectonophysics, 646, 130–140. https://doi.org/10.1016/j.tecto.2015.02.008

Wernicke, B. (1981). Low-angle normal faults in the Basin and Range Province: Nappe tectonics in an extending orogen. Nature, 291(5817), 645–648. https://doi.org/10.1038/291645a0

Whitney, D. L., Teyssier, C., Rey, P. F., and Buck, W. R. (2013). Continental and oceanic core complexes. GSA Bull., 125(3-4), 273–298. https://doi.org/10.1130/B30754.1

Wijns, C., Weinberg, R., Gessner, K., and Moresi, L. (2005). Mode of crustal extension determined by rheological layering. Earth Planet. Sci. Lett., 236(1-2), 120–134. https://doi.org/10.1016/j.jpgl.2005.05.030

Wu, F. Y., Xu, Y. G., Gao, S., and Zheng, J. P. (2008). Lithospheric thinning and destruction of the North China Craton. Acta Petrol. Sin. (in Chinese), 24(6), 1145–1174.

Wu, F. Y., Yang, J. H., Xu, Y. G., Wilde, S. A., and Walker, R. J. (2019). Destruction of the north China craton in the Mesozoic. Annu. Rev. Earth Planet. Sci., 47(1), 173–195. https://doi.org/10.1146/annurev-earth-053018-060342

Wu, G. L., Lavier, L. L., and Choi, E. (2015). Modes of continental extension in a crustal wedge. Earth Planet. Sci. Lett., 421, 89–97. https://doi.org/10.1016/j.jpgl.2015.04.005

Wu, G. L., and Lavier, L. L. (2016). The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults. Tectonics, 35(9), 2195–2214. https://doi.org/10.1002/2016TC004245

Wu, X. D., Zhu, G., Yin, H., Su, N., Lu, Y. C., Zhang, S., and Xie, C. L. (2020). Origin of low-angle ductile/brittle detachments: Examples from the cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39(9), e2020TC006132. https://doi.org/10.1029/2020TC006132

Xia, B., Thybo, H., and Artemieva, I. M. (2017). Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis. J. Geophys. Res.:Solid Earth, 122(7), 5181–5207. https://doi.org/10.1002/2016JB013848

Xu, Y. G. (2001). Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys. Chem. Earth A, 26(9-10), 747–757. https://doi.org/10.1016/S1464-1895(01)00124-7

Zhang, B. L., Zhu, G., Jiang, D. Z., Li, C. C., and Chen, Y. (2012). Evolution of the Yiwulushan metamorphic core complex from distributed to localized deformation and its tectonic implications. Tectonics, 31(4), TC4018. https://doi.org/10.1029/2012TC003104

Zhang, J. J., and Zheng, Y. D. (1999). Multistage extension and age dating of the Xiaoqinling metamorphic core complex, Central China. Acta Geol. Sin. (Engl. Ed.), 73(2), 139–147. https://doi.org/10.1111/j.1755-6724.1999.tb00821.x

Zhao, G. C., Sun, M., Wilde, S. A., and Li, S. Z. (2005). Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res., 136(2), 177–202. https://doi.org/10.1016/j.precamres.2004.10.002

Zheng, J. P., and Dai, H. K. (2018). Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton. Sci. China Earth Sci., 61(4), 406–424. https://doi.org/10.1007/s11430-017-9166-8

Zheng, T. Y., Chen, L., Zhao, L., Xu, W. W., and Zhu, R. X. (2006). Crust-mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust. Phys. Earth Planet. Inter., 159(1-2), 43–58. https://doi.org/10.1016/j.pepi.2006.05.004

Zheng, T. Y., Duan, Y. H., Xu, W. W., and Ai, Y. S. (2017). A seismic model for crustal structure in North China Craton. Earth Planet. Phys., 1, 26–34. https://doi.org/10.26464/epp2017004

Zheng, Y. D., Wang, Y. F., Liu, R., and Shao, J. A. (1988). Sliding-thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beijing, China. J. Struct. Geol., 10(2), 135–144. https://doi.org/10.1016/0191-8141(88)90111-3

Zheng, Y. D., and Wang, T. (2005). Kinematics and dynamics of the Mesozoic orogeny and late-orogenic extensional collapse in the Sino-Mongolian border areas. Sci. China Earth Sci., 48(7), 849–862. https://doi.org/10.1360/03yd0552

Zhu, G., Jiang, D. Z., Zhang, B. L., and Chen, Y. (2012). Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res., 22(1), 86–103. https://doi.org/10.1016/j.gr.2011.08.005

Zhu, R. X., and Zheng, T. Y. (2009). Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Chin. Sci. Bull., 54(19), 3354–3366. https://doi.org/10.1007/s11434-009-0451-5

Zhu, R. X., Chen, L., Wu, F. Y., and Liu, J. L. (2011). Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci., 54(6), 789–797. https://doi.org/10.1007/s11430-011-4203-4

Zhu, R. X., Fan, H. R., Li, J. W., Meng, Q. R., Li, S. R., and Zeng, Q. D. (2015). Decratonic gold deposits. Sci. China Earth Sci., 58(9), 1523–1537. https://doi.org/10.1007/s11430-015-5139-x

Zhu, R. X., and Xu, Y. G. (2019). The subduction of the west Pacific plate and the destruction of the North China Craton. Sci. China Earth Sci., 62(9), 1340–1350. https://doi.org/10.1007/s11430-018-9356-y

Zhu, R. X., Zhou, Z. H., and Meng, Q. R. (2020). Destruction of the North China Craton and its influence on surface geology and terrestrial biotas. Chin. Sci. Bull., 65(27), 2954–2965. https://doi.org/10.1360/TB-2020-0219

[1]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[2]

ChengWei Yang, ChengHu Wang, GuiYun Gao, Pu Wang, 2022: Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton, Earth and Planetary Physics, 6, 123-134. doi: 10.26464/epp2022001

[3]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[4]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[5]

DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014

[6]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[7]

YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015

[8]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[9]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[10]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011

[11]

JinHai Zhang, ZhenXing Yao, 2017: Exact local refinement using Fourier interpolation for nonuniform-grid modeling, Earth and Planetary Physics, 1, 58-62. doi: 10.26464/epp2017008

[12]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[13]

Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054

[14]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[15]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

[16]

MoRan Liu, Chen Zhou, Ting Feng, Xiang Wang, ZhengYu Zhao, 2022: Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating, Earth and Planetary Physics. doi: 10.26464/epp2022043

[17]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[18]

Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022

[19]

Wei Zhang, Mei Tang, ZhenWei Niu, 2022: The anisotropy of hexagonal close-packed iron under inner core conditions: the effect of light elements, Earth and Planetary Physics, 6, 399-423. doi: 10.26464/epp2022035

[20]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton

ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao