Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Zhou, X., Yue, X. A., Liu, H.-L., Wei, Y. and Pan, Y. X. (2021). Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations. Earth Planet. Phys., 5(4), 327–336.

2021, 5(4): 327-336. doi: 10.26464/epp2021040


Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China


Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA

Corresponding author: XinAn Yue,

Received Date: 2021-04-27
Web Publishing Date: 2021-07-08

Responses of atmospheric carbon dioxide (CO2) density to geomagnetic secular variation are investigated using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X). Our ensemble simulations show that CO2 volume mixing ratios (VMRs) increase at high latitudes and decrease at mid and low latitudes by several ppmv in response to a 50% weakening of the geomagnetic field. Statistically significant changes in CO2 are mainly found above ~90 km altitude and primarily redetermine the energy budget at ~100–110 km. Our analysis of transformed Eulerian mean (TEM) circulation found that CO2 change is caused by enhanced upwelling at high latitudes and downwelling at mid and low latitudes as a result of increased Joule heating. We further analyzed the atmospheric CO2 response to realistic geomagnetic weakening between 1978 and 2013, and found increasing (decreasing) CO2 VMRs at high latitudes (mid and low latitudes) accordingly. For the first time, our simulation results demonstrate that the impact of geomagnetic variation on atmospheric CO2 distribution is noticeable on a time scale of decades.

Key words: atmospheric carbon dioxide, geomagnetic fields, whole atmosphere simulation, upper atmosphere

Akmaev, R. A., and Fomichev, V. I. (2000). A model estimate of cooling in the mesosphere and lower thermosphere due to the CO2 increase over the last 3-4 decades. Geophys. Res. Lett., 27(14), 2113–2116.

Akmaev, R. A., Fomichev, V. I., and Zhu, X. (2006). Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J. Atmos. Solar Terr. Phys., 68(17), 1879–1889.

Andrews, D. G., and Mcintyre, M. E. (1976). Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33(11), 2031–2048.<2031:PWIHAV>2.0.CO;2

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 128). San Diego: Academic Press.

Arnold, N. F., and Robinson, T. R. (2001). Solar magnetic flux influences on the dynamics of the winter middle atmosphere. Geophys. Res. Lett., 28(12), 2381–2384.

Cnossen, I., Richmond, A. D., Wiltberger, M., Wang, W. B., and Schmitt, P. (2011). The response of the coupled magnetosphere-ionosphere-thermosphere system to a 25% reduction in the dipole moment of the Earth's magnetic field. J. Geophys. Res., 116(A12), A12304.

Cnossen, I., Richmond, A. D., and Wiltberger, M. (2012). The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth's magnetic dipole moment. J. Geophys. Res., 117(A5), A05302.

Cnossen, I., and Richmond, A. D. (2012). How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system. J. Geophys. Res., 117(A10), A10317.

Cnossen, I. (2014). The importance of geomagnetic field changes versus rising CO2 levels for long-term change in the upper atmosphere. J. Space Wea. Space Climate, 4, A18.

Cnossen, I., Liu, H. L., and Lu, H. (2016). The whole atmosphere response to changes in the Earth's magnetic field from 1900 to 2000: an example of “top-down” vertical coupling. J. Geophys. Res., 121(13), 7781–7800.

Cnossen, I. (2020). Analysis and attribution of climate change in the upper atmosphere from 1950 to 2015 simulated by WACCM-X. J. Geophys. Res., 125(12), e2020JA028623.

Constable, C., Korte, M., and Panovska, S. (2016). Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett., 453, 78–86.

De Santis, A., Qamili, E., Spada, G., and Gasperini, P. (2012). Geomagnetic South Atlantic Anomaly and global sea level rise: a direct connection?. J. Atmos. Solar Terr. Phys., 74, 129–135.

Dickinson, R. E. (1984). Infrared radiative cooling in the mesosphere and lower thermosphere. J. Atmos. Terr. Phys., 46(11), 995–1008.

Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D., and Sinclair, R. W. (1980). Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J. Atmos. Sci., 37(10), 2265–2297.<2265:SSTPIO>2.0.CO;2

Fomichev, V. I., Blanchet, J. P., and Turner, D. S. (1998). Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J. Geophys. Res., 103(D10), 11505–11528.

Fomichev, V. I., Jonsson, A. I., de Grandpré, J., Beagley, S. R., McLandress, C., Semeniuk, K., and Shepherd, T. G. (2007). Response of the middle atmosphere to CO2 doubling: results from the Canadian middle atmosphere model. J. Climate, 20(7), 1121–1144.

Gallet, Y., Genevey, A., and Fluteau, F. (2005). Does Earth's magnetic field secular variation control centennial climate change?. Earth Planet. Sci. Lett., 236(1-2), 339–347.

Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112(D9), D09301.

Gubbins, D., Jones, A. L., and Finlay, C. C. (2006). Fall in Earth's magnetic field is erratic. Science, 312(5775), 900–902.

Guyodo, Y., and Valet, J. P. (1999). Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature, 399(6733), 249–252.

Heelis, R. A., Lowell, J. K., and Spiro, R. W. (1982). A model of the high-latitude ionospheric convection pattern. J. Geophys. Res., 87(A8), 6339–6345.

Jeevanjee, N., and Fueglistaler, S. (2020). On the cooling-to-space approximation. J. Atmos. Sci., 77(2), 465–478.

Kitaba, I., Hyodo, M., Katoh, S., Dettman, D. L., and Sato, H. (2013). Midlatitude cooling caused by geomagnetic field minimum during polarity reversal. Proc. Natl. Acad. Sci. USA, 110(4), 1215–1220.

Kitaba, I., Hyodo, M., Nakagawa, T., Katoh, S., Dettman, D. L., and Sato, H. (2017). Geological support for the umbrella effect as a link between geomagnetic field and climate. Sci. Rep., 7, 40682.

Kockarts, G. (1980). Nitric oxide cooling in the terrestrial thermosphere. Geophys. Res. Lett., 7(2), 137–140.

Korte, M., Constable, C., Donadini, F., and Holme, R. (2011). Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett., 312(3−4), 497–505.

Li, J. Y., Wang, W. B., Lu, J. Y., Yuan, T., Yue, J., Liu, X., Zhang, K. D., Burns, A. G., Zhang, Y. L., and Li, Z. (2018). On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes. Geophys. Res. Lett., 45(19), 10128–10137.

Li, J. Y., Wang, W. B., Lu, J. Y., Yue, J., Burns, A. G., Yuan, T., Chen, X. T., and Dong, W. J. (2019). A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes. J. Geophys. Res., 124(5), 3666–3680.

Liu, H. L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., Marsh, D. R., Maute, A., Mcinerney, J. M., .. Wang, W. B. (2018). Development and validation of the whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X 2.0). J. Adv. Model. Earth Syst., 10(2), 381–402.

Liu, H. X., Tao, C., Jin, H., and Nakamoto, Y. (2020). Circulation and tides in a cooler upper atmosphere: dynamical effects of CO2 doubling. Geophys. Res. Lett., 47(10), e2020GL087413.

Liu, H. X., Tao, C., Jin, H., and Abe, T. (2021). Geomagnetic activity effects on CO2-driven trend in the thermosphere and ionosphere: ideal model experiments with GAIA. J. Geophys. Res., 126(1), e2020JA028607.

Lu, G., Mlynczak, M. G., Hunt, L. A., Woods, T. N., and Roble, R. G. (2010). On the relationship of Joule heating and nitric oxide radiative cooling in the thermosphere. J. Geophys. Res., 115(A5), A05306.

Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J. F., Calvo, N., and Polvani, L. M. (2013). Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26(19), 7372–7391.

Mlynczak, M., Martin-Torres, F. J., Russell, J., Beaumont, K., Jacobson, S., Kozyra, J., Lopez-Puertas, M., Funke, B., Mertens, C., .. Paxton, L. (2003). The natural thermostat of nitric oxide emission at 5.3 μm in the thermosphere observed during the solar storms of April 2002. Geophys. Res. Lett., 30(21), 2100.

Mlynczak, M. G., Knipp, D. J., Hunt, L. A., Gaebler, J., Matsuo, T., Kilcommons, L. M., and Young, C. L. (2018). Space-based sentinels for measurement of infrared cooling in the thermosphere for space weather nowcasting and forecasting. Space Wea., 16(4), 363–375.

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M. H. (2013). The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26(14), 5150–5168.

Qian, L. Y., Roble, R. G., Solomon, S. C., and Kane, T. J. (2006). Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophys. Res. Lett., 33(23), L23705.

Qian, L. Y., Laštovička, J., Roble, R. G., and Solomon, S. C. (2011). Progress in observations and simulations of global change in the upper atmosphere. J. Geophys. Res., 116(A2), A00H03.

Qian, L. Y., Burns, A. G., Solomon, S. C., and Wang, W. B. (2017). Carbon dioxide trends in the mesosphere and lower thermosphere. J. Geophys. Res., 122(4), 4474–4488.

Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., and Russell Ⅲ, J. M. (2007). Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992-2005. J. Geophys. Res., 112(D8), D08308.

Rezac, L., Jian, Y., Yue, J., Russell Ⅲ, J. M., Kutepov, A., Garcia, R., Walker, K., and Bernath, P. (2015). Validation of the global distribution of CO2 volume mixing ratio in the mesosphere and lower thermosphere from SABER. J. Geophys. Res., 120(23), 12067–12081.

Richmond, A. D. (1995). Ionospheric electrodynamics using magnetic apex coordinates. J. Geomag. Geoelectr., 47(2), 191–212.

Roble, R. G., and Ridley, E. C. (1987). An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. A, 5(6), 369–382.

Roble, R. and Dickinson, R. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?. Geophysical Research Letters, 16, 1441-1444.

Seppälä, A., Lu, H., Clilverd, M. A., and Rodger, C. J. (2013). Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. J. Geophys. Res. Atmos., 118, 2169–2183.

Smith, A. K., Garcia, R. R., Marsh, D. R., and Richter, J. H. (2011). WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res., 116(D20), D20115.

Solomon, S. C., Qian, L. Y., and Roble, R. G. (2015). New 3-D simulations of climate change in the thermosphere. J. Geophys. Res., 120(3), 2183–2193.

Solomon, S. C., Liu, H. L., Marsh, D. R., McInerney, J. M., Qian, L. Y., and Vitt, F. M. (2018). Whole atmosphere simulation of anthropogenic climate change. Geophys. Res. Lett., 45(3), 1567–1576.

Svensmark, H., Enghoff, M. B., Shaviv, N. J., and Svensmark, J. (2017). Increased ionization supports growth of aerosols into cloud condensation nuclei. Nat. Commun., 8(1), 2199.

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., … Zvereva, T. (2015). International geomagnetic reference field: the 12th generation. Earth Planets Space, 67(1), 79.

Valet, J. P., and Meynadier, L. (1993). Geomagnetic field intensity and reversals during the past four million years. Nature, 366(6452), 234–238.

Wollin, G., Ericson, D. B., Ryan, W. B. F., and Foster, J. H. (1971). Magnetism of the earth and climatic changes. Earth Planet. Sci. Lett., 12(2), 175–183.

Yue, X. N., Hu, L. H., Wei, Y., Wan, W. X., and Ning, B. Q. (2018). Ionospheric trend over Wuhan during 1947-2017: comparison between simulation and observation. J. Geophys. Res., 123(2), 1396–1409.

Zossi, B. S., Elias, A. G., and Fagre, M. (2018). Ionospheric conductance spatial distribution during geomagnetic field reversals. J. Geophys. Res., 123(3), 2379–2397.


LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012


Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036


TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010


Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047


Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046


Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040


RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045


DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038


Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012


Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039


FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043


Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015


ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059


BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033


YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043


Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060


KaiHua Xu, Fei He, Yong Wei, Ross N. Mitchell, Si Chen, YuQi Wang, ZhaoJin Rong, 2022: A new inclination-based method to evaluate the global geomagnetic configuration and axial dipole moment, Earth and Planetary Physics, 6, 359-365. doi: 10.26464/epp2022030


MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations

Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan