Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, D. H., Ding, Z. F., Zhan, Y., Wu, P. P., Chang, L. J. and Sun, X. Y. (2021). Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China. Earth Planet. Phys., 5(4), 348–361. http://doi.org/10.26464/epp2021038

2021, 5(4): 348-361. doi: 10.26464/epp2021038

SOLID EARTH: SEISMOLOGY

Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China

1. 

Chengdu Institute of the Tibetan Plateau Earthquake Research, China Earthquake Administration, Chengdu 610041, China

2. 

Institute of Geophysics, China Earthquake Administration, Beijing 100081, China

3. 

Institute of Geology, China Earthquake Administration, Beijing 100029, China

Corresponding author: DaHu Li, lixiang2006@sina.com

Received Date: 2021-05-18
Web Publishing Date: 2021-07-02

On August 8, 2017, a magnitude 7.0 earthquake occurred in Jiuzhaigou County, Sichuan Province, China. The deep seismogenic environment and potential seismic risk in the eastern margin of Tibetan Plateau have once again attracted the close attention of seismologists and scholars at home and abroad. The post-earthquake scientific investigation could not identify noticeable surface rupture zones in the affected area; the complex tectonic background and the reason(s) for the frequent seismicity in the Jiuzhaigou earthquake region are unclear. In order to reveal the characteristics of the deep medium and the seismogenic environment of the M7.0 Jiuzhaigou earthquake region, and to interpret the tectonic background and genesis of the seismicity comprehensively, in this paper, we have reviewed all available observation data recorded by the regional digital seismic networks and large-scale, dense mobile seismic array (China Array) for the northern section of the North–South Seismic Belt around Jiuzhaigou earthquake region. Using double-difference seismic tomography method to invert the three-dimensional P-wave velocity structure characteristics of the upper crust around the Jiuzhaigou earthquake region, we have analyzed and discussed such scientific questions as the relationship between the velocity structure characteristics and seismicity in the Jiuzhaigou earthquake region, its deep tectonic environment, and the ongoing seismic risk in this region. We report that: the P-wave velocity structure of the upper crust around the Jiuzhaigoug earthquake region exhibits obvious lateral inhomogeneity; the distribution characteristics of the shallow P-wave velocity structure are closely related to surface geological structure and formation lithology; the M7.0 Jiuzhaigou earthquake sequence is closely related to the velocity structure of the upper crust; the mainshock of the M7.0 earthquake occurred in the upper crust; the inhomogeneous variation of the velocity structure of the Jiuzhaigou earthquake area and its surrounding medium appears to be the deep structural factor controlling the spatial distribution of the mainshock and its sequence. The 3D P-wave velocity structure also suggests that the crustal low-velocity layer of northeastern SGB (Songpan–Garzê Block) stretches into MSM (Minshan Mountain), and migrates to the northeast, but the tendency to emerge as a shallow layer is impeded by the high-velocity zone of Nanping Nappe tectonics and the Bikou Block. Our results reveal an uneven distribution of high- and low-velocity structures around the Tazang segment of the East Kunlun fault zone. Given that the rupture caused by the Jiuzhaigou earthquake has enhanced the stress fields at both ends of the seismogenic fault, it is very important to stay vigilant to possible seismic hazards in the large seismic gap at the Maqu–Maqên segment of the East Kunlun fault zone.

Key words: the M7.0 Jiuzhaigou earthquake, 3D P-wave velocity structure, deep tectonic, seismogenic environment

Allam, A. A., Ben-Zion, Y., Kurzon, I., and Vernon, F. (2014). Seismic velocity structure in the hot springs and trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography. Geophys. J. Int., 198(2), 978–999. https://doi.org/10.1093/gji/ggu176

Bi, B. T., Hu, X. Y., Li, L. Q., Zhang, H. L., Liu, S., and Cai, J. C. (2016). Multi-scale analysis to the gravity field of the northeastern Tibetan plateau and its geodynamic implications. Chin. J. Geophys., 59(2), 543–555. https://doi.org/10.6038/cjg20160213

Cunningham, W. D., and Mann, P. (2007). Tectonics of strike-slip restraining and releasing bends. Geol. Soc. London Spec. Publ., 290(1), 1–12. https://doi.org/10.1144/SP290.1

Ding, Z. F. (2011). China seismic science array exploration-South section of the North South seismic belt. Seismic Sci. Technol. Int. Exchange, 2, 36–39.

Eberhart-Phillips, D. (1986). Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times. Bull. Seismol. Soc. Am., 76(4), 1025–1052.

Eberhart-Phillips, D. (1993). Local Earthquake Tomography: Earthquake Source Regions. In H. M. Iyer, et al. (Eds.), Seismic Tomography: Theory and Practice (pp. 613-643). London: Chapman and Hall.

Fang, L. H., Wu, J. P., Su, J. R., Wang, M. M., Jiang, C., Fan, L. P., Wang, W. L., Wang, C. Z., and Tan, X. L. (2018). Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake. Chin. Sci. Bull., 63(7), 649–662. https://doi.org/10.1360/N972017-01184

Gao, R., Wang, H. Y., Zeng, L. S., Zhang, J. S., Guo, T. L., Li, Q. S., Li, W. H., Li, P. W., and Guan, Y. (2014). The crust structures and the connection of the Songpan block and West Qinling orogen revealed by the Hezuo-Tangke deep seismic reflection profiling. Tectonophysics, 634, 227–236. https://doi.org/10.1016/j.tecto.2014.08.014

Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34(4), 561–580. https://doi.org/10.1137/1034115

Hansen, P. C., and O'Leary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 14(6), 1487–1503. https://doi.org/10.1137/0914086

Hofstetter, R., Dorbath, C., and Calò, M. (2012). Crustal structure of the Dead Sea Basin from local earthquake tomography. Geophys. J. Int., 189(1), 554–568. https://doi.org/10.1111/j.1365-246X.2012.05369.x

Ji, L. Y., Liu, C. J., Xu, J., Liu, L., Long, F., and Zhang, Z. W. (2017). InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou Ms7.0 earthquake in China. Chin. J. Geophys., 60(10), 4069–4082. https://doi.org/10.6038/cjg20171032

Kirby, E., Whipple, K. X., Tang, W. Q., and Chen, Z. L. (2003). Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res., 108(B4), 2217. https://doi.org/10.1029/2001JB000861

Li, C. X., Xu, X. W., Wen, X. Z., Zheng, R. Z., Chen, G. H., Yang, H., An, Y. F., and Gao, X. (2011). Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau. Sci. China Earth Sci., 54(11), 1730–1745. https://doi.org/10.1007/s11430-011-4239-5

Li, D. H., Ding, Z. F., Wu, P. P., Zheng, C., Ye, Q. D., and Liang, M. J. (2015a). The deep seismogenic environment of the southeastern section of the Xianshuihe fault zone and the 2014 Kangding Ms6.3 earthquake. Chin. J. Geophys., 58(6), 1941–1953. https://doi.org/10.6038/cjg20150610

Li, D. H., Wu, P. P., and Ding, Z. F. (2015b). Tomography of the three dimensional P-wave velocity structure in the source region of the Ms7.0 Lushan, Sichuan, earthquake and its surrounding areas. Acta Seismol. Sin., 37(3), 371–385. https://doi.org/10.11939/jass.2015.03.001

Li, D. H., Ding, Z. F., Wu, P. P., Liang, M. J., Wu, P., Gu, Q. P., and Kang, Q. Q. (2019). Deep structure of the Zhaotong and Lianfeng fault zones in the eastern segment of the Sichuan-Yunnan border and the 2014 Ludian Ms6.5 earthquake. Chin. J. Geophys., 62(12), 4571–4587. https://doi.org/10.6038/cjg2019M0450

Li, D. H., Zhan, Y., Ding, Z. F., Gao, J. Y., Wu, P. P., Meng, L. Y., Sun, X. Y., and Zhang, X. (2021). Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan, China. Chin. J. Geophys., 64(1), 18–35. https://doi.org/10.6038/cjg2021O0241

Liang, J. H., Sun, L., and Liu, J. (2018). A high precision relocation study of the MS7.0 Jiuzhaigou earthquake and the aftershocks occurred in 2017. Chin. J. Geophys., 61(5), 2152–2162. https://doi.org/10.6038/cjg2018L0604

Liang, S. S., Lei, J. S., Xu, Z. G., Xu, X. W., Zou, L. Y., Liu, J. G., and Chen, H. F. (2018). Relocation of aftershocks of the 2017 Jiuzhaigou, Sichuan, Ms7.0 earthquake and inversion for focal mechanism of the mainshock. Chin. J. Geophys., 61(5), 2163–2175. https://doi.org/10.6038/cjg2018L0508

Liu, Z., Tian, X. B., Gao, R., Wang, G. C., Wu, Z. B., Zhou, B. B., Tan, P., Nie, S. T., Yu, G. P., … Xu, X. (2017). New images of the crustal structure beneath eastern Tibet from a high-density seismic array. Earth Planet. Sci. Lett., 480, 33–41. https://doi.org/10.1016/j.jpgl.2017.09.048

Long, F., Yi, G. X., Wang, S. W., Qi, Y. P., and Zhao, M. (2019). Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 Ms 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China. Earth Planet. Phys., 3(3), 253–267. https://doi.org/10.26464/epp2019027

Ma, X., Westman, E. C., Fahrman, B. P., and Thibodeau, D. (2016). Imaging of temporal stress redistribution due to triggered seismicity at a deep nickel mine. Geomechan. Energy Environ., 5, 55–64. https://doi.org/10.1016/j.gete.2016.01.001

Min, G., Wang, X. B., Xia, S. B., Zhou, J., Zhang, B., Cai, X. L., and Liang, S. Q. (2017). Electrical structure of middle and upper crust beneath the Minshan uplift zone and central section of the West Qinling orogenic zone. Chin. J. Geophys., 60(6), 2397–2413. https://doi.org/10.6038/cjg20170629

Okada, T., Yaginuma, T., Umino, N., Matsuzawa, T., Hasegawa, A., Zhang, H. J., and Thurber, C. H. (2006). Detailed imaging of the fault planes of the 2004 Niigata-Chuetsu, central Japan, earthquake sequence by double-difference tomography. Earth Planet. Sci. Lett., 244(1−2), 32–43. https://doi.org/10.1016/j.jpgl.2006.02.010

Okada, T., Hasegawa, A., Suganomata, J., Umino, N., Zhang, H. J., and Thurber, C. H. (2007). Imaging the heterogeneous source area of the 2003 M6.4 northern Miyagi earthquake, NE Japan, by double-difference tomography. Tectonophysics, 430(1-4), 67–81. https://doi.org/10.1016/j.tecto.2006.11.001

Qin, J. F., Lai, S. C., Zhang, G. W., Diwu, C. R., and Li, Y. F. (2008). Zircon LA-ICP-MS U-Pb dating of the Longkang ignimbrite in the Jiuzhaigou area, Sichuan, China: Evidence of the westward Extension of the Mianlüe suture. Geol. Bull. China, 27(3), 345–350. https://doi.org/10.3969/j.issn.1671-2552.2008.03.005

Shen, W. S., Ritzwoller, M. H., Kang, D., Kim, Y. H., Lin, F. C., Ning, J. Y., Wang, W. T., Zheng, Y., and Zhou, L. Q. (2016). A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int., 206(2), 954–979. https://doi.org/10.1093/gji/ggw175

Spakman W, Van Der Lee S, Van Der Hilst R. (1993). Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Physics of the Earth and Planetary Interiors, 79(1−2), 3–74. https://doi.org/10.1016/0031-9201(93)90142-V

Sun, J. B., Yue, H., Shen, Z. K., Fang, L. H., Zhan, Y., and Sun, X. Y. (2018). The 2017 Jiuzhaigou earthquake: a complicated event occurred in a young fault system. Geophys. Res. Lett., 45(5), 2230–2240. https://doi.org/10.1002/2017GL076421

Sun, X. Y., Zhan, Y., Zhao, L. Q., Chen, X. B., Sun, J. B., Li, C. X., Cui, T. F., and Han, J. (2019). Electrical structure of the Kunlun-Qinling fault system, northeastern Tibetan Plateau, inferred from 3–D inversion of magnetotelluric data. J. Asian Earth Sci., 181, 103910. https://doi.org/10.1016/j.jseaes.2019.103910

Sun, X. Y., Zhan, Y., Unsworth, M., Egbert, G., Zhang, H. P., Chen, X. B., Zhao, G. Z., Sun, J. B., Zhao, L. Q., … Han, J. (2020). 3-D Magnetotelluric imaging of the easternmost Kunlun fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake. J. Geophys. Res. Solid Earth, 125(5), e2020JB019731. https://doi.org/10.1029/2020JB019731

Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P. (1982). Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10(12), 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

Thurber, C., Roecker, S., Zhang, H. J., Baher, S., and Ellsworth, W. (2004). Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes. Geophys. Res. Lett., 31(12), L12S02. https://doi.org/10.1029/2003GL019398

Thurber, C. H., Brocher, T. M., Zhang, H. J., and Langenheim, V. E. (2007). Three-dimensional P wave velocity model for the San Francisco Bay region, California. J. Geophys, Res., 112(B7), B07313. https://doi.org/10.1029/2006JB004682

Toda, S., Lin, J., Meghraoui, M., and Stein, R. S. (2008). 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophys. Res. Lett., 35(17), L17305. https://doi.org/10.1029/2008GL034903

Waldhauser, F., and Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull. Seismol. Soc. Am., 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Wang, C. S., Gao, R., Yin, A., Wang, H. Y., Zhang, Y. X., Guo, T. L., Li, Q. S., and Li, Y. L. (2011). A mid-crustal strain-transfer model for continental deformation: a new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth Planet. Sci. Lett., 306(3−4), 279–288. https://doi.org/10.1016/j.jpgl.2011.04.010

Watkins, W. D., Thurber, C. H., Abbott, E. R., and Brudzinski, M. R. (2018). Local earthquake tomography of the Jalisco, Mexico region. Tectonophysics, 724-725, 51–64. https://doi.org/10.1016/j.tecto.2018.01.002

Wen, X. Z., Yi, G. X., and Xu, X. W. (2007). Background and precursory seismicities along and surrounding the Kunlun fault before the Ms8.1, 2001, Kokoxili earthquake, China. J. Asian Earth Sci., 30, 63–72. https://doi.org/10.1016/j.jseaes.2006.07.008

Wen, X. Z. (2018). The 2008 Wenchuan, 2013 Lushan and 2017 Jiuzhaigou earthquakes, Sichuan, in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block. Acta Seismol. Sin., 40(3), 255–267. https://doi.org/10.11939/jass.20170211

Wu, H. B., Shen, X. L., Wang, J., Zhao, L. Y., and Chen, J. H. (2018). Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography. Chin. J. Geophys., 61(7), 2802–2814. https://doi.org/10.6038/cjg2018L0345

Xie, Z. J., Zheng, Y., Yao, H. J., Fang, L. H., Zhang, Y., Liu, C. L., Wang, M. M., Shan, B., Zhang, H. P., … Song, M. Q. (2018). Preliminary analysis on the source properties and seismogenic structure of the 2017 Ms7.0 Jiuzhaigou earthquake. Sci. China Earth Sci., 61(3), 339–352. https://doi.org/10.1007/s11430-017-9161-y

Xu, L. S., Zhang, X., and Li, C. L. (2018). Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?. Earth Planet. Phys., 2(2), 163–169. https://doi.org/10.26464/epp2018016

Xu, T., Zhang, M. H., Tian, X. B., Zheng, Y., Bai, Z. M., Wu, C. L., Zhang, Z. J., and Teng, J. W. (2014). Upper crustal velocity of Lijiang-Qingzhen profile and its relationship with the seismogenic environment of the Ms6.5 Ludian earthquake. Chin. J. Geophys., 57(9), 3069–3079. https://doi.org/10.6038/cjg20140932

Xu, X. W., Chen, G. H., Wang, Q. X., Chen, L. C., Ren, Z. K., Xu, C., Wei, Z. Y., Lu, R. Q., Tan, X. B., … Shi, F. (2017a). Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chin. J. Geophys., 60(10), 4018–4026. https://doi.org/10.6038/cjg20171028

Xu, X. W., Wu, X. Y., Yu, G. H., Tan, X. B., and Li, K. (2017b). Seismo-Geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in Mainland China. Seismol. Geol., 39(2), 219–275.

Yang, Y., and Chang, L. J. (2018). Variations of shear wave splitting in the source region of the 2017 Jiuzhaigou MS7.0 earthquake. Chin. J. Geophys., 61(5), 2088–2098. https://doi.org/10.6038/cjg2018M0174

Yi, G. X., Long, F., Liang, M. J., Zhang, H. P., Zhao, M., Ye, Y. Q., Zhang, Z. W., Qi, Y. P., Wang, S. W., … Su, J. R. (2017). Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chin. J. Geophys., 60(10), 4083–4097. https://doi.org/10.6038/cjg20171033

Zhan, Y., Zhao, G. Z., Unsworth, M., Wang, L. F., Chen, X. B., Li, T., Xiao, Q. B., Wang, J. J., Tang, J., … Wang, Y. Z. (2013). Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 Lushan Ms7.0 earthquake. Chin. Sci. Bull., 58(28-29), 3467–3474. https://doi.org/10.1007/s11434-013-6013-x

Zhang, H. J., and Thurber, C. H. (2003). Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93(5), 1875–1889. https://doi.org/10.1785/0120020190

Zhang, H. J., and Thurber, C. (2006). Development and applications of double-difference seismic tomography. Pure. Appl. Geophys., 163(2-3), 373–403. https://doi.org/10.1007/s00024-005-0021-y

Zhang, H. P., Liu, S. F., Yang, N., Zhang, Y. Q., and Zhang, G. W. (2006). Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan Plateau) and its tectonic implications: New insights from a digital elevation model study. Island Arc, 15(2), 239–250. https://doi.org/10.1111/j.1440-1738.2006.00524.x

Zhang, X., Feng, W. P., Xu, L. S., and Li, C. L. (2017). The source-process inversion and the intensity estimation of the 2017 Ms7.0 Jiuzhaigou earthquake. Chin. J. Geophys., 60(10), 4105–4116. https://doi.org/10.6038/cjg20171035

Zhao, C. P. (2006). Study on Seismological Methods for the Characteristics of Jiashi Focal Area in Xinjiang from 1997 to 2003. Institute of Geophysics, China Earthquake Administration.

Zhao, G. Z., Unsworth, M. J., Zhan, Y., Wang, L. F., Chen, X. B., Jones, A. G., Tang, J., Xiao, Q. B., Wang, J. J., … Zhang, J. H. (2012). Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12), 1139–1142. https://doi.org/10.1130/G33703.1

Zhao, X. L., Deng, Q. D., and Chen, S. F. (1994). Tectonic geomorphology of the Minshan uplift in western Sichuan, southwestern China. Seismol. Geol., 16(4), 429–439.

Zuo, K. Z., Zhao, C. P., and Zhang, H. (2020). 3D crustal structure and seismicity characteristics of Changning–Xingwen Area in the Southwestern Sichuan Basin, China. Bull. Seismol. Soc. Am., 110(5), 2154–2167. https://doi.org/10.1785/0120200085

[1]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[2]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[3]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[4]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[5]

Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054

[6]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[7]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[8]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[9]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[10]

TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010

[11]

GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002

[12]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[13]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[14]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[15]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[16]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[17]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[18]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[19]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[20]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China

DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun