Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Chen, C. X. (2021). Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail. Earth Planet. Phys., 5(4), 337–347. http://doi.org/10.26464/epp2021035

2021, 5(4): 337-347. doi: 10.26464/epp2021035

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail

Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Corresponding author: ChuXin Chen, chuxin@ustc.edu.cn

Received Date: 2021-03-11
Web Publishing Date: 2021-06-08

The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet. In this study, we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions. If the charged particles are non-adiabatically accelerated no more than once in a single reconnection, the temperature ratio would be preserved; on the other hand, this ratio would not be preserved if they are accelerated multiple times. Consequently, under a northward interplanetary magnetic field (IMF) condition, the reconnection in the nonlinear phase of the Kelvin–Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere, and the ion-to-electron temperature ratio is preserved inside the plasma sheet. When the direction of the IMF is southward, the reflection of electrons from the magnetic mirror point, and subsequent multiple non-adiabatic accelerations at the reconnection site, are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight. While reconnections that occur in the night-side far tail might preserve the ratio, turbulence on the boundaries of the bursty bulk flows (BBFs) could change the ratio in the far tail through the violation of the frozen-in condition of the ions. The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet, which has not been clearly understood till date.

Key words: plasma sheet, ion-to-electron temperature ratio, patchy magnetic reconnection, non-adiabatic acceleration, bursty bulk flows, far tail

Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman, W. C., and Gosling, J. T. (1994). Statistical characteristics of bursty bulk flow events. J. Geophys. Res. Space Phys., 99(A11), 21257–21280. https://doi.org/10.1029/94JA01263

Baumjohann, W., Paschmann, G., and Cattell, C. A. (1989). Average plasma properties in the central plasma sheet. J. Geophys. Res. Space Phys., 94(A6), 6597–6606. https://doi.org/10.1029/JA094iA06p06597

Borovsky, J. E., Thomsen, M. F., Elphic, R. C., Cayton, T. E., and McComas, D. J. (1998). The transport of plasma sheet material from the distant tail to geosynchronous orbit. J. Geophys. Res. Space Phys., 103(A9), 20297–20331. https://doi.org/10.1029/97JA03144

Büchner, J., and Zelenyi, L. M. (1989). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. Space Phys., 94(A9), 11821–11842. https://doi.org/10.1029/JA094iA09p11821

Chen, C. X., and Wolf, R. A. (1999). Theory of thin-filament motion in Earth’s magnetotail and its application to bursty bulk flows. J. Geophys. Res. Space Phys., 104(A7), 14613–14626. https://doi.org/10.1029/1999JA900005

Chen, C. X. (2013). Theoretical constraints on the cross-tail width of bursty bulk flows. Ann. Geophys., 31(12), 2179–2192. https://doi.org/10.5194/angeo-31-2179-2013

Chen, C. X., and Wang, C. P. (2019). Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail. Earth Planet. Phys., 3(6), 474–480. https://doi.org/10.26464/epp2019049

Echim, M. M., and Lemaire, J. F. (2000). Laboratory and numerical simulations of the impulsive penetration mechanism. Space Sci. Rev., 92(3-4), 565–601. https://doi.org/10.1023/A:1005264212972

Faganello, M., Califano, F., Pegoraro, F., Andreussi, T., and Benkadda, S. (2012). Magnetic reconnection and Kelvin-Helmholtz instabilities at the Earth’s magnetopause. Plasma Phys. Control. Fusion, 54(12), 124037. https://doi.org/10.1088/0741-3335/54/12/124037

Hardy, D. A., Gussenhoven, M. S., and Brautigam, D. (1989). A statistical model of auroral ion precipitation. J. Geophys. Res. Space Phys., 94(A1), 370–392. https://doi.org/10.1029/JA094iA01p00370

Hasegawa, A., and Mima, K. (1978). Anomalous transport produced by kinetic Alfvén wave turbulence. J. Geophys. Res. Space Phys., 83(A3), 1117–1123. https://doi.org/10.1029/JA083iA03p01117

Hill, T. W. (1975). Magnetic merging in a collisionless plasma. J. Geophys. Res., 80(34), 4689–4699. https://doi.org/10.1029/JA080i034p04689

Izutsu, T., Hasegawa, H., Nakamura, T. K. M., and Fujimoto, M. (2012). Plasma transport induced by kinetic Alfvén wave turbulence. Phys. Plasmas, 19(10), 102305. https://doi.org/10.1063/1.4759167

Johnson, J. R., and Cheng, C. Z. (1997). Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett., 24(11), 1423–1426. https://doi.org/10.1029/97GL01333

Johnson, J. R., and Wing, S. (2009). Northward interplanetary magnetic field plasma sheet entropies. J. Geophys. Res. Space Phys., 114(A9), A00D08. https://doi.org/10.1029/2008JA014017

Lavraud, B., Thomsen, M. F., Lefebvre, B., Schwartz, S. J., Seki, K., Phan, T. D., Wang, Y. L., Fazakerley, A., Rème, H., and Balogh, A. (2006). Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF. J. Geophys. Res. Space Phys., 111(A5), A05211. https://doi.org/10.1029/2005JA011266

Lavraud, B., Borovsky, J. E., Génot, V., Schwartz, S. J., Birn, J., Fazakerley, A. N., Dunlop, M. W., Taylor, M. G. G. T., Hasegawa, H., … Wild, J. A. (2009). Tracing solar wind plasma entry into the magnetosphere using ion-to-electron temperature ratio. Geophys. Res. Lett., 36(18), L18109. https://doi.org/10.1029/2009GL039442

Li, W., André, M., Khotyaintsev, Y. V., Vaivads, A., Graham, D. B., Toledo-Redondo, S., Norgren, C., Henri, P., Wang, C., … Strangeway, R. J. (2016). Kinetic evidence of magnetic reconnection due to Kelvin-Helmholtz waves. Geophys. Res. Lett., 43(11), 5635–5643. https://doi.org/10.1002/2016GL069192

Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk, M., Asano, Y., Vörös, Z., Zhang, T. L., … Balogh, A. (2004). Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett., 31(9), L09804. https://doi.org/10.1029/2004GL019558

Nykyri, K., Otto, A., Lavraud, B., Mouikis, C., Kistler, L. M., Balogh, A., and Rème, H. (2006). Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys., 24(10), 2619–2643. https://doi.org/10.5194/angeo-24-2619-2006

Onsager, T. G., Thomsen, M. F., Elphic, R. C., and Gosling, J. T. (1991). Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. Space Phys., 96(A12), 20999–21011. https://doi.org/10.1029/91JA01983

Onsager, T. G., Scudder, J. D., Lockwood, M., and Russell, C. T. (2001). Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. J. Geophys. Res. Space Phys., 106(A11), 25467–25488. https://doi.org/10.1029/2000JA000444

Otto, A., and Fairfield, D. H. (2000). Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J. Geophys. Res. Space Phys., 105(A9), 21175–21190. https://doi.org/10.1029/1999JA000312

Paschmann, G., Baumjohann, W., Sckopke, N., Phan, T. D., and Lühr, H. (1993). Structure of the dayside magnetopause for low magnetic shear. J. Geophys. Res. Space Phys., 98(A8), 13409–13422. https://doi.org/10.1029/93JA00646

Phan, T. D., Paschmann, G., Baumjohann, W., Sckopke, N., and Lühr, H. (1994). The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J. Geophys. Res. Space Phys., 99(A1), 121–141. https://doi.org/10.1029/93JA02444

Schriver, D., Ashour-Abdalla, M., and Richard, R. L. (1998). On the origin of the ion-electron temperature difference in the plasma sheet. J. Geophys. Res. Space Phys., 103(A7), 14879–14895. https://doi.org/10.1029/98JA00017

Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., and Akasofu, S. I. (1985). An ISEE 3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res. Space Phys., 90(A11), 10875–10895. https://doi.org/10.1029/JA090iA11p10875

Song, P., and Russell, C. T. (1992). Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J. Geophys. Res. Space Phys., 97(A2), 1411–1420. https://doi.org/10.1029/91JA02377

Song, P., DeZeeuw, D. L., Gombosi, T. I., Groth, C. P. T., and Powell, K. G. (1999). A numerical study of solar wind—magnetosphere interaction for northward interplanetary magnetic field. J. Geophys. Res. Space Phys., 104(A12), 28361–28378. https://doi.org/10.1029/1999JA900378

Tsyganenko, N. A. (1995). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res. Space Phys., 100(A4), 5599–5612. https://doi.org/10.1029/94JA03193

Tsyganenko, N. A., and Mukai, T. (2003). Tail plasma sheet models derived from Geotail particle data. J. Geophys. Res. Space Phys., 108(A3), 1136. https://doi.org/10.1029/2002JA009707

Wang, C. P., Lyons, L. R., Nagai, T., Weygand, J. M., and Lui, A. T. Y. (2010). Evolution of plasma sheet particle content under different interplanetary magnetic field conditions. J. Geophys. Res. Space Phys., 115(A6), A06210. https://doi.org/10.1029/2009JA015028

Wang, C. P., Gkioulidou, M., Lyons, L. R., and Angelopoulos, V. (2012). Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. J. Geophys. Res. Space Phys., 117(A8), A08215. https://doi.org/10.1029/2012JA017658

Wing, S., Johnson, J. R., Chaston, C. C., Echim, M., Escoubet, C. P., Lavraud, B., Lemon, C., Nykyri, K., Otto, A., … Wang, C. P. (2014). Review of solar wind entry into and transport within the plasma sheet. Space Sci. Rev., 184(1-4), 33–86. https://doi.org/10.1007/s11214-014-0108-9

[1]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[2]

ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012

[3]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics, 6, 465-473. doi: 10.26464/epp2022041

[4]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[5]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

[6]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[7]

MoRan Liu, Chen Zhou, Ting Feng, 2023: Electron acceleration by Langmuir turbulence in ionospheric heating, Earth and Planetary Physics. doi: 10.26464/epp2023001

[8]

Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038

[9]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[10]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[11]

LeLin Xing, ZiWei Liu, JianGang Jia, ShuQing Wu, ZhengSong Chen, XiaoWei Niu, 2021: Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in China continent, Earth and Planetary Physics, 5, 141-148. doi: 10.26464/epp2021018

[12]

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027

[13]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[14]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[15]

DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014

[16]

EunJin Jang, Chao Yue, QiuGang Zong, SuiYan Fu, HaoBo Fu, 2021: The effect of non-storm time substorms on the ring current dynamics, Earth and Planetary Physics, 5, 251-258. doi: 10.26464/epp2021032

[17]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[18]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[19]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[20]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail

ChuXin Chen