Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Ye, Y. G., Zou, H., Zong, Q.-G., Chen, H. F., Zou, J. Q., Shi, W. H., Yu, X. Q., Zhong, W. Y., Wang, Y. F., Hao, Y. X., Liu, Z. Y., Jia, X. H., Wang, B., Yang, X. P. and Hao, X. Y. (2021). Energetic electron detection packages on board Chinese navigation satellites in MEO. Earth Planet. Phys., 5(2), 158–179.

2021, 5(2): 158-179. doi: 10.26464/epp2021021


Energetic electron detection packages on board Chinese navigation satellites in MEO


School of Earth and Space Sciences, Peking University, Beijing 100871, China


State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing 100093, China


Shandong Aerospace Electro-technology, Yantai Shandong 264000, China

Corresponding author: Hong Zou,

Received Date: 2020-11-24
Web Publishing Date: 2021-03-01

Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E telescope technology, and a deep dielectric charging monitor (DDCM). The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30° field of view (FOV). The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30° cone-angle FOV. The ground test and calibration results indicate that these three sensors exhibit excellent performance. Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer (MagEIS) of the Van Allen Probes spacecraft, with an average relative deviation of 27.3% for the energy spectra. The charging currents and voltages measured by the DDCM during storms are consistent with the high-energy electron observations of the HED, demonstrating the effectiveness of the DDCM. The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.

Key words: radiation belts, energetic electron detection, Pin-hole technology, Chinese navigation satellites, MEO, internal charging

Baker, D. N., Kanekal, S. G., Li, X., Monk, S. P., Goldstein, J., and Burch, J. L. (2004). An extreme distortion of the Van Allen belt arising from the 'Hallowe'en' solar storm in 2003. Nature, 432(7019), 878–881.

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Batiste, S., Bolton, M., Li, X., Elkington, S. R., Monk, S., Reukauf, R., … Friedel, R. (2013a). The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: characterization of Earth’s radiation belt high-energy particle Populations. Space Sci. Rev., 179(1-4), 337–381.

Baker, D. N., Kanekal, S. G., Hoxie, V. C., Henderson, M. G., Li, X., Spence, H. E., Elkington, S. R., Friedel, R. H. W., Goldstein, J., … Claudepierre, S. G. (2013b). A long-lived relativistic electron storage ring embedded in earth’s outer Van Allen belt. Science, 340(6129), 186–190.

Baker, D. N., Erickson, P. J., Fennell, J. F., Foster, J. C., Jaynes, A. N., and Verronen, P. T. (2018). Space weather effects in the Earth’s radiation belts. Space Sci. Rev., 214, 17.

Baker, D. N., Hoxie, V., Zhao, H., Jaynes, A. N., Kanekal, S., Li, X. L., and Elkington, S. (2019). Multiyear measurements of radiation belt electrons: acceleration, transport, and loss. J. Geophys. Res. Space Phys., 124(4), 2588–2602.

Blake, J. B., Kolasinski, W. A., Fillius, R. W., and Mullen, E. G. (1992). Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991. Geophys. Res. Lett., 19(8), 821–824.

Blake, J. B., Fennell, J. F., Friesen, L. M., Johnson, B. M., Kolasinski, W. A., Mabry, D. J., Osborn, J. V., Penzin, S. H., Schnauss, E. R., … Hall, D. (1995). CEPPAD: comprehensive energetic particle and pitch angle distribution experiment on POLAR. Space Sci. Rev., 71(1-4), 531–562.

Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R. Jr., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., … Zakrzewski, M. P. (2013). The Magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421.

Bortnik, J., Chu, X. N., Ma, Q. L., Li, W., Zhang, X. J., Thorne, R. M., Angelopoulos, V., Denton, R. E., Kletzing, C. A., ... Baker, D. N. (2018). Artificial neural networks for determining magnetospheric conditions. In E. Camporeale, et al. (Eds.), Machine Learning Techniques for Space Weather (pp. 279-300). Amsterdam: Elsevier.

Chen, X. R., Zong, Q. G., Zou, H., Wang, Y. F., Zhou, X. Z., and Biake, J. B. (2020a). Distribution of energetic electrons in the near earth space: new observations from the BeiDa Imaging Electron Spectrometer and the Van Allen Probes. Planet. Space Sci., 186, 104919.

Chen, X. R., Zong, Q. G., Zou, H., Zhou, X. Z., Li, L., Hao, Y. X., and Wang Y. F. (2020b). BeiDa imaging electron spectrometer observation of multi-period electron flux modulation caused by localized ultra-low-frequency waves. Ann. Geophys., 38(4), 801–813.

Chen, Z., Chen, H. F., Li, Y. F., Xiang, H. W., Yu, X. Q., Shi, W. H., Hao, Z. H., Zou, H., Zou, J. Q., and Zhong, W. Y. (2017). Variations of the relativistic electron flux after a magnetospheric compression event. Sci. China Tech. Sci., 60(4), 638–647.

Evans, D. S., and Greer, M. S. (2004). Polar orbiting environmental satellite space Environment monitor-2: Instrument descriptions and archive data documentation. Tech Memo version 1.3, Boulder: US Department of Commerce, National Oceanic and Atmospheric Administration, Oceanic and Atmospheric Research Laboratories, Space Environment Center.

Fennell, J. F., Koons, H. C., Chen, M. W., and Blake, J. B. (2000). Internal charging: a preliminary environmental specification for satellites. IEEE Trans. Plasma Sci., 28(6), 2029–2036.

Fennell, J. F., Claudepierre, S. G., Blake, J. B., O’Brien, T. P., Clemmons, J. H., Baker, D. N., Spence, H. E., and Reeves, G. D. (2015). Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys. Res. Lett., 42(5), 1283–1289.

Frederickson, A. R., Mullen, E. G., Brautigam, D. H., Kerns, K. J., Robinson, P. A., and Holman, E. G. (1991). Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment. IEEE Trans. Nucl. Sci., 38(6), 1614–1621.

Frederickson, A. R., Holeman, E. G., and Mullen, E. G. (1992). Characteristics of spontaneous electrical discharging of various insulators in space radiations. IEEE Trans. Nucl. Sci., 39(6), 1773–1782.

Frederickson, A. R. (1996). Method for estimating spontaneous pulse rate for insulators inside spacecraft. IEEE Trans. Nucl. Sci., 43(6), 2778–2782.

Hao, Y. Q., Xiao, Z., Zou, H., and Zhang, D. H. (2007). Energetic particle radiations measured by particle detector on board CBERS-1 satellite. Chin. Sci. Bull., 52(5), 665–670.

Hao, Y. X., Zong, Q. G., Zhou, X. Z., Zou, H., Rankin, R., Sun, Y. X., Chen, X. R., Liu, Y., Fu, S. Y., … Baker, D. N. (2020). A short-lived three-belt structure for sub-MeV electrons in the Van Allen belts: time scale and energy dependence. J. Geophys. Res. Space Phys., 125(9), e2020JA028031.

Johnson, M. H., and Kierein, J. (1992). Combined Release and Radiation Effects Satellite (CRRES): spacecraft and mission. J. Spacecr. Rockets., 29(4), 556–563.

Leach, R. D., and Alexander, M. B. (1995). Failures and anomalies attributed to spacecraft charging. NASA Reference Publication 1375, Huntsville: NASA.

Li, L., Zhou, X. Z., Zong, Q. G., Chen, X. R., Zou, H., Ren, J., Hao, Y. X., and Zhang, X. G. (2017a). Ultralow frequency wave characteristics extracted from particle data: application of IGSO observations. Sci. China Technol. Sci., 60(3), 419–424.

Li, L., Zhou, X. Z., Zong, Q. G., Rankin, R., Zou, H., Liu, Y., Chen, X. R., and Hao, Y. X. (2017b). Charged particle behavior in localized ultralow frequency waves: theory and observations. Geophys. Res. Lett., 44(12), 5900–5908.

Li, W., and Hudson, M. K. (2019). Earth's Van Allen radiation belts: from discovery to the Van Allen Probes era. J. Geophys. Res. Space Phys., 124(11), 8319–8351.

Liu, Z. Y., Zong, Q. G., Hao, Y. X., Liu, Y., and Chen, X. R. (2018). The radial propagation characteristics of the injection front: a statistical study based on BD-IES and Van Allen probes observations. J. Geophys. Res. Space Phys., 123(3), 1927–1937.

Liu, Z. Y., Zong, Q. G., Zou, H., Wang, Y. F., and Wang, B. (2019). Drifting electron holes occurring during geomagnetically quiet times: BD-IES observations. J. Geophys. Res. Space Phys., 124(11), 8695–8706.

Luo, L., Zou, H., Zong, Q. G., Wang, L. H., Chen, H. F., Shi, W. H., and Yu, X. Q. (2015). Anti-proton contamination design of the imaging energetic electron spectrometer based on Geant4 simulation. Sci. China Technol. Sci., 58(8), 1385–1391.

Mann, I. R., Ozeke, L. G., Murphy, K. R., Claudepierre, S. G., Turner, D. L., Baker, D. N., Bae, I. J., Kale, A., Milling, D. K., … Honary, F. (2016). Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt. Nat. Phys., 12(10), 978–983.

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 3–27.

Miyoshi, Y., Ono, T., Takashima, T., Asamura, K., Hirahara, M., Kasaba, Y. et al. (2015). The energization and radiation in geospace (ERG) project. Geophys. Monogr., 199, 103–116.

Olson, W. P., and Pfitzer, K. A. (1977). Magnetospheric magnetic field modeling. Technical Report, Huntington Beach, California: McDonnell Douglas Astronautics Co.

Selesnick, R. S., Su, Y. J., and Blake, J. B. (2016). Control of the innermost electron radiation belt by large-scale electric fields. J. Geophys. Res. Space Phys., 121(9), 8417–8427.

Tuszewski M., Cayton T. E., Ingraham J. C., et al. (2004). Bremsstrahlung effects in energetic particle detectors. Space Weather, 2, S10S01.

Violet, M. D., and Frederickson, A. R. (1993). Spacecraft anomalies on the CRRES satellite correlated with the environment and insulator samples. IEEE Trans. Nucl. Sci., 40(6), 1512–1520.

Wang, C. Q., Zhang, X., Zhang, L. G., Zhang, R. Y., Jin, L. Q., Sun, Y. Q., Jing, T., Zhang K. Y., Zhang, H. X., … Chang, Z. (2017). Space radiation environment observations and applications based on GEO satellites. Aerosp. Shanghai (in Chinese) , 34(4), 85–95.

Wang, L. H., Zong, Q. G., Shi, Q. Q., Wang, Y. F., Tu, C. Y., He, J. S., Tian, H., Wimmer-Schweingruber, R. F., and Zou, H. (2017). Discrete energetic (~50−200 keV) electron events in the high-altitude cusp/polar cap/lobe. Sci. China Technol. Sci., 60(12), 1935–1940.

Wilken, B., Axford, W. I., Daglis, I., Daly, P., Güttler, W., Ip, W. H., Korth, A., Kremser, G., Livi, S., … Ullaland, S. (1997). RAPID-The imaging energetic particle spectrometer on cluster. Space Sci. Rev., 79(1-2), 399–473.

Xiao, Z., Zou, J. Q., Zou, H., Zhong, W. Y., Huo, H. D., Bao, S. L., Xu, P. F., Zhu, W. M., and Wu, Z. X. (2003). Energetic particle detector on board ‘ZY-1’ satellite. Acta Sci. Nat. Univ. Pekinensis (in Chinese) , 39(3), 361–369.

Yin, Z. F., Zou, H., Ye, Y. G., Zong, Q. G., and Wang, Y. F. (2019). Superposed epoch analysis of the energetic electron flux variations during CIRs measured by BD-IES. Space Wea., 17(12), 1765–1782.

Yu, X. Q., Song S. Y., Chen H. F., Qu, Y. N., Zou, H., Zong, Q. G., Shi, W. H., Zou, J. P., Zhong, W. Y., … Shao, S. P. (2020). Monitoring deep dielectric charging effects in space. IEEE Trans. Nucl. Sci., 67(4), 716–721.

Zong, Q. G., Hao, Y. X., Zou, H., Fu, S. Y., Zhou, X. Z., Ren, J., Wang, L. H., Yuan, C. J., Liu, Z. Y., … Wang, Y. F. (2016). Radial propagation of magnetospheric substorm-injected energetic electrons observed using a BD-IES instrument and Van Allen Probes. Sci. China Earth Sci., 59(7), 1508–1516.

Zong, Q. G., Wang, Y. F., Zou, H., Wang, L. H., Rankin, R., and Zhang, X. X. (2018). New magnetospheric substorm injection monitor: image electron spectrometer on board a Chinese navigation IGSO satellite. Space Wea., 16(2), 121–125.

Zou, H., Xiao, Z., Zou, J. Q., Zhong, W. Y., Hao, Y. Q., Zhang, D. H., Ma, Y. Q., Wang, H. Y., Xu, Y. P., … Wu, Z. X. (2004). A comparison between detections of energetic electron by ZY1/CBMC and SZ2/XD. Chin. J. Geophys., 47(4), 644–651.

Zou, H., Xiao, Z., Hao, Y. Q., Zou, J. Q., Zhu, W. M., Wu, Z. X., Xiang, H. W. (2006a). Analysis of the observation of particle detector inside 'CBERS-1' satellite under solar quiet conditions. Sci. China Ser. E, 49(3), 342–357.

Zou, H., Xiao, Z., Hao, Y. Q., Zou, J. Q., Zhong, W. Y., Wu, Z. X., Xiang, H. W., and Zhu, W. M. (2006b). Observation of the disturbed events by the particle detector inside “ZY-1” satellite. Chin. J. Geophys., 49(3), 559–564.

Zou, H., Chen, H. F., Zou, J. Q., Shi, W. H., Xiao, Z., Hao, Y. Q., Wu, Z. X., Xiang, H. W., and Zhu, W. M. (2007). Comparison between the observation of the particle detector inside 'ZY-1' Satellite and the model of the radiation belt. Chin. J. Geophys., 50(3), 593–598.

Zou, H., Luo, L., Li, C. F., Jia, X. H., Xu, F., Chen, H. F., Chen, J., Shi, W. H., Yu, X. Q., and Zou, J. Q. (2013). Angular response of ‘pin-hole’ imaging structure measured by collimated β source. Sci. China Technol. Sci., 56(11), 2675–2680.

Zou, H., Ye, Y. G., Zong, Q. G., Chen, H. F., Zou, J. Q., Chen, J., Shi, W. H., Yu, X. Q., Zhong, W. Y., … Zhang, X. X. (2018). Imaging energetic electron spectrometer on board a Chinese navigation satellite in the inclined GEO orbit. Sci. China Technol. Sci., 61(12), 1845–1865.

Zou, H., Ye, Y. G., Zong, Q. G., Chen, H. F., Luo, L., Zhou, X. Z., Chen, X. R., Hao, Y. X., Ren, J. … Zhang, X. X. (2019). Monte Carlo simulations of the sensor head of imaging energetic electron spectrometer on board a Chinese IGSO navigation satellite. Sci. China Technol. Sci., 62(7), 1169–1181.


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060


ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037


ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012


Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022


Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046


LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011


ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055


QingHua Huang, 2021: Annual Meeting minutes of the Chinese Geoscience Union, 2020, Earth and Planetary Physics, 5, 121-121. doi: 10.26464/epp2021013


Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021


LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


JianXun Shen, Yan Chen, Yu Sun, Li Liu, YongXin Pan, Wei Lin, 2022: Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments, Earth and Planetary Physics, 6, 431-450. doi: 10.26464/epp2022042


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Energetic electron detection packages on board Chinese navigation satellites in MEO

YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao