Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Tang, T., Yang, J., Shi, Q. Q., Tian, A. M., Bai, S.-C., Degeling, A. W., Fu, S. Y., Liu, J. X., Shao, T. and Sun, Z. Y. (2020). The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect. Earth Planet. Phys., 4(6), 1–8doi: 10.26464/epp2020066

doi: 10.26464/epp2020066

SPACE PHYSICS

The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect

1. 

Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai Shandong 264209, China

2. 

Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China

Corresponding author: QuanQi Shi, sqq@sdu.edu.cn

Received Date: 2020-05-10
Web Publishing Date: 2020-08-01

Earth’s aurora is a luminescent phenomenon generated by the interaction between magnetospheric precipitating particles and the upper atmosphere; it plays an important role in magnetosphere–ionosphere (M-I) coupling. The transpolar arc (TPA) is a discrete auroral arc distributed in the noon-midnight direction poleward of the auroral oval and connects the dayside to the nightside sectors of the auroral oval. Studying the seasonal variation of TPA events can help us better understand the long-term variation of the interaction between the solar wind, the magnetosphere, and M-I coupling. However, a statistical study of the seasonal variation of TPA incidence has not previously been carried out. In this paper, we have identified 532 TPA events from the IMAGE database (2000–2005) and the Polar database (1996–2002), and calculated the incidence of TPA events for different months. We find a semiannual variation in TPA incidence. Clear peaks in the incidence of TPAs occur in March and September; a less pronounced peak appears in November. We also examine seasonal variation in the northward interplanetary magnetic field (IMF) over the same time period. The intensity and occurrence rate of the northward IMF exhibit patterns similar to that of the TPA incidence. Having studied IMF Bz before TPA onset, we find that strong and steady northward IMF conditions are favorable for TPA formation. We suggest that the semiannual variation observed in TPA incidence may be related to the Russell–McPherron (R-M) effect due to the projection effect of the IMF By under northward IMF conditions.

Key words: transpolar arc incidence, interplanetary magnetic field, Russell–McPherron effect, semiannual variation

Bai, S. C., Shi, Q. Q., Tian, A. M., Nowada, M., Degeling, A. W., Zhou, X. Z., Zong, Q. G., Rae, I. J., Fu, S. Y., … Fazakerly, A. N. (2018). Spatial distribution and semiannual variation of cold-dense plasma sheet. J. Geophys. Res. Space Phys., 123(1), 464–472. https://doi.org/10.1002/2017JA024565

Berkey, F. T., Cogger, L. L., Ismail, S., and Kamide, Y. (1976). Evidence for a correlation between Sun-aligned arcs and the interplanetary magnetic field direction. Geophys. Res. Lett., 3(3), 145–147. https://doi.org/10.1029/GL003i003p00145

Carter, J. A., Milan, S. E., Fear, R. C., Walach, M. T., Harrison, Z. A., Paxton, L. J., and Hubert, B. (2017). Transpolar arcs observed simultaneously in both hemispheres. J. Geophys. Res. Space Phys., 122(6), 6107–6120. https://doi.org/10.1002/2016JA023830

Cliver, E. W., Kamide, Y., and Ling, A. G. (2000). Mountains versus valleys: Semiannual variation of geomagnetic activity. J. Geophys. Res. Space Phys., 105(A2), 2413–2424. https://doi.org/10.1029/1999JA900439

Cliver, E. W., Kamide, Y., and Ling, A. G. (2002). The semiannual variation of geomagnetic activity: phases and profiles for 130 years of aa data. J. Atmos. Sol. Terr. Phys., 64(1), 47–53. https://doi.org/10.1016/S1364-6826(01)00093-1

Craven, J. D., Murphree, J. S., Frank, L. A., and Cogger, L. L. (1991). Simultaneous optical observations of transpolar arcs in the two polar caps. Geophys. Res. Lett., 18(12), 2297–2300. https://doi.org/10.1029/91GL02308

Crooker, N. U. (1992). Reverse convection. J. Geophys. Res. Space Phys., 97(A12), 19363–19372. https://doi.org/10.1029/92JA01532

Eriksson, S., Baker, J. B. H., Petrinec, S. M., Wang, H., Rich, F. J., Kuznetsova, M., Dunlop, M. W., Rème, H., Greenwald, R. A., … Carlson, C. W. (2005). On the generation of enhanced sunward convection and transpolar aurora in the high-latitude ionosphere by magnetic merging. J. Geophys. Res. Space Phys., 110(A11), A11218. https://doi.org/10.1029/2005JA011149

Fear, R. C., and Milan, S. E. (2012). The IMF dependence of the local time of transpolar arcs: Implications for formation mechanism. J. Geophys. Res. Space Phys., 117(A3), A03213. https://doi.org/10.1029/2011JA017209

Feldstein, Y. I., and Starkov, G. V. (1967). Dynamics of auroral belt and polar geomagnetic disturbances. Planet. Space Sci., 15(2), 209–229. https://doi.org/10.1016/0032-0633(67)90190-0

Frank, L. A., Craven, J. D., Burch, J. L., and Winningham, J. D. (1982). Polar views of the Earth’s aurora with Dynamics Explorer. Geophys. Res. Lett., 9(9), 1001–1004. https://doi.org/10.1029/GL009i009p01001

Frank, L. A., Craven, J. D., and Rairden, R. L. (1985). Images of the earth's aurora and geocorona from the Dynamics Explorer Mission. Adv. Space Res., 5(4), 53–68. https://doi.org/10.1016/0273-1177(85)90116-4

Frank, L. A., Craven, J. D., Gurnett, D. A., Shawhan, S. D., Weimer, D. R., Burch, J. L., Winningham, J. D., Chappell, C. R., Waite, J. H., … Shelley, E. G. (1986). The theta aurora. J. Geophys. Res. Space Phys., 91(A3), 3177–3224. https://doi.org/10.1029/JA091iA03p03177

Gussenhoven, M. S. (1982). Extremely high latitude auroras. J. Geophys. Res. Space Phys., 87(A4), 2401–2412. https://doi.org/10.1029/JA087iA04p02401

Gussenhoven, M. S., and Mullen, E. G. (1989). Simultaneous relativistic electron and auroral particle access to the polar caps during interplanetary magnetic field Bz northward: A scenario for an open field line source of auroral particles. J. Geophys. Res. Space Phys., 94(A12), 17121–17132. https://doi.org/10.1029/JA094iA12p17121

Hultqvist, B. (1974). Rocket and satellite observations of energetic particle precipitation in relation to optical aurora. Ann. Geophys., 30(2), 223–257.

Kullen, A. (2000). The connection between transpolar arcs and magnetotail rotation. Geophys. Res. Lett., 27(1), 73–76. https://doi.org/10.1029/1999GL010675

Kullen, A., Brittnacher, M., Cumnock, J. A., and Blomberg, L. G. (2002). Solar wind dependence of the occurrence and motion of polar auroral arcs: A statistical study. J. Geophys. Res. Space Phys., 107(A11), 13-1–13-23. https://doi.org/10.1029/2002JA009245

Kullen, A. (2012). Transpolar arcs: Summary and recent results. In A. Keiling, et al. (Eds.), Auroral Phenomenology and Magnetospheric Processes: Earth And Other Planets (pp. 69-80). Washington: AGU. https://doi.org/10.1029/2011GM001183222

Lassen, K., and Danielsen, C. (1989). Distribution of auroral arcs during quiet geomagnetic conditions. J. Geophys. Res. Space Phys., 94(A3), 2587–2594. https://doi.org/10.1029/JA094iA03p02587

Li, X., Ramachandran, R., Movva, S., Graves, S., Germany, G., Lyatsky, W., and Tan, A. (2004). Dayglow removal from FUV auroral images. In 2004 IEEE International Geoscience and Remote Sensing Symposium (pp. 3774–3777). Anchorage, AK: IEEE. https://doi.org/10.1109/IGARSS.2004.1369944222

Liou, K., Newell, P. T., Sibeck, D. G., Meng, C. I., Brittnacher, M., and Parks, G. (2001). Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. Space Phys., 106(A4), 5799–5810. https://doi.org/10.1029/2000JA003001

Mailyan, B., Shi, Q. Q., Kullen, A., Maggiolo, R., Zhang, Y., Fear, R. C., Zong, Q. G., Fu, S. Y., Gou, X. C., … Pu, Z. Y. (2015). Transpolar arc observation after solar wind entry into the high-latitude magnetosphere. J. Geophys. Res. Space Phys., 120(5), 3525–3534. https://doi.org/10.1002/2014JA020912

Mende, S. B., Heetderks, H., Frey, H. U., Lampton, M., Geller, S. P., Habraken, S., Renotte, E., Jamar, C., Rochus, P., … Cogger, L. (2000a). Far ultraviolet imaging from the IMAGE spacecraft. 1. System design. Space Sci. Rev., 91(1-2), 243–270. https://doi.org/10.1023/A:1005271728567

Mende, S. B., Heetderks, H., Frey, H. U., Lampton, M., Geller, S. P., Abiad, R., Siegmund, O. H. W., Tremsin, A. S., Spann, J., … Trondsen, T. (2000b). Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging. Space Sci. Rev., 91(1-2), 271–285. https://doi.org/10.1023/A:1005227915363

Mende, S. B., Heetderks, H., Frey, H. U., Stock, J. M., Lampton, M., Geller, S. P., Abiad, R., Siegmund, O. H. W., Habraken, S., … Lauche, H. (2000c). Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-α and OI 135.6 nm. Space Sci. Rev., 91(1-2), 287–318.

Milan, S. E., Hubert, B., and Grocott, A. (2005). Formation and motion of a transpolar arc in response to dayside and nightside reconnection. J. Geophys. Res. Space Phys., 110(A1), A01212. https://doi.org/10.1029/2004JA010835

Peterson, W. K., and Shelley, E. G. (1984). Origin of the plasma in a cross-polar cap auroral feature (theta aurora). J. Geophys. Res. Space Phys., 89(A8), 6729–6736. https://doi.org/10.1029/JA089iA08p06729

Rees, M. H. (1963). Auroral ionization and excitation by incident energetic electrons. Planet. Space Sci., 11(10), 1209–1218. https://doi.org/10.1016/0032-0633(63)90252-6

Russell, C. T., and McPherron, R. L. (1973). Semiannual variation of geomagnetic activity. J. Geophys. Res., 78(1), 92–108. https://doi.org/10.1029/JA078i001p00092

Shi, Q. Q., Zong, Q. G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., … Lucek, E. (2009). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J. Geophys. Res. Space Phys., 114(A12), A12219. https://doi.org/10.1029/2009JA014475

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat. Commun., 4, 1466. https://doi.org/10.1038/ncomms2476

Tanaka, T., Obara, T., and Kunitake, M. (2004). Formation of the theta aurora by a transient convection during northward interplanetary magnetic field. J. Geophys. Res. Space Phys., 109(A9), A09201. https://doi.org/10.1029/2003JA010271

Torr, M. R., Torr, D. G., Zukic, M., Johnson, R. B., Ajello, J., Banks, P., Clark, K., Cole, K., Keffer, C., … Spann, J. (1995). A far ultraviolet imager for the International Solar-Terrestrial Physics Mission. Space Sci. Rev., 71(1-4), 329–383. https://doi.org/10.1007/BF00751335

Yokoyama, N., Kamide, Y., and Miyaoka, H. (1998). The size of the auroral belt during magnetic storms. Ann. Geophys., 16(5), 566–573. https://doi.org/10.1007/s00585-998-0566-z

Yue, C., Zong, Q. G., Zhang, H., Wang, Y. F., Yuan, C. J., Pu, Z. Y., Fu, S. Y., Lui, A. T. Y., Yang, B., and Wang, C. R. (2010). Geomagnetic activity triggered by interplanetary shocks. J. Geophys. Res. Space Phys., 115(A5), A00105. https://doi.org/10.1029/2010JA015356

Yue, C., and Zong, Q. G. (2011). Solar wind parameters and geomagnetic indices for four different interplanetary shock/ICME structures. J. Geophys. Res. Space Phys., 116(A12), A12201. https://doi.org/10.1029/2011JA017013

Yue, C., Zong, Q. G, Wang, Y. F., Vogiatzis, I. I., Pu, Z. Y., Fu, S. Y., and Shi, Q. Q. (2011). Inner magnetosphere plasma characteristics in response to interplanetary shock impacts. J. Geophys. Res. Space Phys., 116(A11), A11206. https://doi.org/10.1029/2011JA016736

Zhang, X. Y., Zong, Q. G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., Yuan, C. J., Yue, C., Yang, B., and Pu, Z. Y. (2010). ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J. Geophys. Res. Space Phys., 115(A10), A10221. https://doi.org/10.1029/2009JA015016

Zhao, H., and Zong, Q. G. (2012). Seasonal and diurnal variation of geomagnetic activity: Russell–McPherron effect during different IMF polarity and/or extreme solar wind conditions. J. Geophys. Res. Space Phys., 117(A11), A11222. https://doi.org/10.1029/2012JA017845

Zhou, X. Z., Ge, Y. S., Angelopoulos, V., Runov, A., Liang, J., Xing, X., Raeder, J., and Zong, Q. G. (2012). Dipolarization fronts and associated auroral activities: 2. Acceleration of ions and their subsequent behavior. J. Geophys. Res. Space Phys., 117(A10), A10227. https://doi.org/10.1029/2012JA017677

Zong, Q. G., Zhou, X. Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A. (2009). Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. Space Phys., 114(A10), A10204. https://doi.org/10.1029/2009JA014393

Zong, Q. G., Wang, Y. F., Zhang, H., Fu, S. Y., Zhang, H., Wang, C. R., Yuan, C. J., and Vogiatzis, I. (2012). Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J. Geophys. Res. Space Phys., 117(A11), A11206. https://doi.org/10.1029/2012JA018024

[1]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[2]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[3]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[4]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[5]

Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039

[6]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[7]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[8]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: a universal time effect, Earth and Planetary Physics. doi: 10.26464/epp2021004

[9]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[10]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[11]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[12]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[13]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[14]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[15]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[16]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[17]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[18]

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

[19]

Elizabeth A. Silber, 2018: Deployment of a short-term geophysical field survey to monitor acoustic signals associated with the Windsor Hum, Earth and Planetary Physics, 2, 351-358. doi: 10.26464/epp2018032

[20]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The semiannual variation of transpolar arc incidence and its relationship to the Russell–McPherron effect

Tao Tang, Jun Yang, QuanQi Shi, AnMin Tian, Shi-Chen Bai, Alexander William Degeling, SuiYan Fu, JingXian Liu, Tong Shao, ZeYuan Sun