Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, Z. C., Cui, J., Li, J., Wu, X. S., Zhong, J. H. and Jiang, F. Y. (2020). Solar control of CO2 + ultraviolet doublet emission on Mars. Earth Planet. Phys., 4(6), 543–549doi: 10.26464/epp2020064

doi: 10.26464/epp2020064

PLANETARY SCIENCES

Solar control of CO2 + ultraviolet doublet emission on Mars

1. 

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

2. 

School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

4. 

Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China

5. 

Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2020-06-10
Web Publishing Date: 2020-11-09

The $ {\rm{CO}}_2^+$ ultraviolet doublet (UVD) emission near 289 nm is an important feature of dayside airglow emission from planetary upper atmospheres. In this study, we analyzed the brightness profiles of $ {\rm{CO}}_2^+$ UVD emission on Mars by using the extensive observations made by the Imaging Ultraviolet Spectrograph on board the recent Mars Atmosphere and Volatile Evolution spacecraft. Strong solar cycle and solar zenith angle variations in peak emission intensity and altitude were revealed by the data: (1) Both the peak intensity and altitude increase with increasing solar activity, and (2) the peak intensity decreases, whereas the peak altitude increases, with increasing solar zenith angle. These observations can be favorably interpreted by the solar-driven scenario combined with the fact that photoionization and photoelectron impact ionization are the two most important processes responsible for the production of excited-state $ {\rm{CO}}_2^+$ and consequently the intensity of $ {\rm{CO}}_2^+$ UVD emission. Despite this, we propose that an extra driver, presumably related to the complicated variation in the background atmosphere, such as the occurrence of global dust storms, is required to fully interpret the observations. In general, our analysis suggests that the $ {\rm{CO}}_2^+$ UVD emission is a useful diagnostic of the variability of the dayside Martian atmosphere under the influences of both internal and external drivers.

Key words: Mars, dayglow, CO2 +, MAVEN

Barth, C. A., Fastie, W. G., Hord, C. W., Pearce, J. B., Kelly, K. K., Stewart, A. I., Thomas, G. E., Anderson, G. P., and Raper, O. F. (1969). Mariner 6: Ultraviolet spectrum of Mars upper atmosphere. Science, 165(3897), 1004–1005. https://doi.org/10.1126/science.165.3897.1004

Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., and Stewart, A. I. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data. J. Geophys. Res., 76(10), 2213–2227. https://doi.org/10.1029/JA076i010p02213

Bougher, S. W., Bell, J. M., Murphy, J. R., Lopez-Valverde, M. A., and Withers, P. G. (2006). Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett., 33(2), L02203. https://doi.org/10.1029/2005GL024059

Bougher, S. W., McDunn, T. M., Zoldak, K. A., and Forbes, J. M. (2009). Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances. Geophys. Res. Lett., 36(5), L05201. https://doi.org/10.1029/2008GL036376

Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., … Jakosky, B. M. (2017). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res.:Space Phys., 122(1), 1296–1313. https://doi.org/10.1002/2016JA023454

Cox, C., Gérard, J. C., Hubert, B., Bertaux, J. L., and Bougher, S. W. (2010). Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. J. Geophys. Res.:Planets, 115(E4), E04010. https://doi.org/10.1029/2009JE003504

England, S. L., Liu, G., Yiğit, E., Mahaffy, P. R., Elrod, M., Benna, M., Nakagawa, H., Terada, N., and Jakosky, B. (2017). MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. J. Geophys. Res.:Space Phys., 122(2), 2310–2335. https://doi.org/10.1002/2016JA023475

Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. B. M. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2

Fox, J. L., and Dalgarno, A. (1979). Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res.:Space Phys., 84(A12), 7315–7333. https://doi.org/10.1029/ja084ia12p07315

Fox, J. L. (1992). Airglow and aurora in the atmospheres of Venus and Mars. In J. G. Luhmann, et al. (Eds.), Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions (pp. 191-222). Washington: AGU. https://doi.org/10.1029/GM066p0191222

Fox, J. L., and Yeager, K. E. (2009). MGS electron density profiles: Analysis of the peak magnitudes. Icarus, 200(2), 468–479. https://doi.org/10.1016/j.icarus.2008.12.002

Fox, J. L., and Weber, A. J. (2012). MGS electron density profiles: analysis and modeling of peak altitudes. Icarus, 221(2), 1002–1019. https://doi.org/10.1016/j.icarus.2012.10.002

Fu, M. H., Cui, J., Wu, X. S., Wu, Z. P., and Li, J. (2020). The variations of the Martian exobase altitude. Earth Planet. Phys., 4(1), 4–10. https://doi.org/10.26464/epp2020010

Gérard, J. C., Gkouvelis, L., Ritter, B., Hubert, B., Jain, S. K., and Schneider, N. M. (2019). MAVEN-IUVS observations of the CO2+ UV doublet and CO Cameron bands in the Martian thermosphere: Aeronomy, seasonal, and latitudinal distribution. J. Geophys. Res.:Space Phys., 124(7), 5816–5827. https://doi.org/10.1029/2019JA026596

Gkouvelis, L., Gérard, J. C., Ritter, B., Hubert, B., Schneider, N. M., and Jain, S. K. (2018). The O(1S) 297.2-nm dayglow emission: A tracer of CO2 density variations in the Martian lower thermosphere. J. Geophys. Res.:Planets, 123(12), 3119–3132. https://doi.org/10.1029/2018JE005709

González-Galindo, Chaufray, F., Forget, J.-Y., García-Comas, F., Montmessin, M., F., Jain, S. K., & Stiepen, A. (2018). UV dayglow variability on Mars: Simulation with a global climate model and comparison with SPICAM/ MEx data. Journal of Geophysical Research:Planets, 123, 1934–1952. https://doi.org/10.1029/2018JE005556

Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., … Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett., 42(21), 9023–9030. https://doi.org/10.1002/2015GL065419

Jain, S. K., Deighan, J., Schneider, N. M., Stewart, A. I. F., Evans, J. S., Thiemann, E. M. B., Chaffin, M. S., Crismani, M., Stevens, M. H., … Jakosky, B. M. (2018). Martian thermospheric response to an X8.2 solar flare on 10 September 2017 as seen by MAVEN/IUVS. Geophys. Res. Lett., 45(15), 7312–7319. https://doi.org/10.1029/2018GL077731

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., … Zurek, R. (2015). The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev., 195(1–4), 3–48. https://doi.org/10.1007/s11214-015-0139-x

Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T., and Smith, M. D. (2016). Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett., 43(12), 6111–6118. https://doi.org/10.1002/2016GL068978

Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., and Bertaux, J. L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. J. Geophys. Res.:Planets, 111(E9), E09S11. https://doi.org/10.1029/2005JE002664

Lo, D. Y., Yelle, R. V., Schneider, N. M., Jain, S. K., Stewart, A. I. F., England, S. L., Deighan, J. I., Stiepen, A., Evans, J. S., … Jakosky, B. M. (2015). Nonmigrating tides in the Martian atmosphere as observed by maven IUVS. Geophys. Res. Lett., 42(21), 9057–9063. https://doi.org/10.1002/2015GL066268

McClintock, W. E., Schneider, N. M., Holsclaw, G. M., Clarke, J. T., Hoskins, A. C., Stewart, I., Montmessin, F., Yelle, R. V., and Deighan, J. (2015). The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev., 195(1-4), 75–124. https://doi.org/10.1007/s11214-014-0098-7

Morgan, D. D., Gurnett, D. A., Kirchner, D. L., Fox, J. L., Nielsen, E., and Plaut, J. J. (2008). Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res.:Space Phys., 113(A9), A09303. https://doi.org/10.1029/2008JA013313

Siddle, A. G., Mueller-Wodarg, I. C. F., Stone, S. W., and Yelle, R. V. (2019). Global characteristics of gravity waves in the upper atmosphere of Mars as measured by MAVEN/NGIMS. Icarus, 333, 12–21. https://doi.org/10.1016/j.icarus.2019.05.021

Slanger, T. G., Cravens, T. E., Crovisier, J., Miller, S., and Strobel, D. F. (2008). Photoemission phenomena in the solar system. Space Sci. Rev., 139(1-4), 267–310. https://doi.org/10.1007/s11214-008-9387-3

Stevens, M. H., Evans, J. S., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., Crismani, M., Stiepen, A., Chaffin, M. S., … Jakosky, B. M. (2015). New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophys. Res. Lett., 42(21), 9050–9056. https://doi.org/10.1002/2015GL065319

Stevens, M. H., Siskind, D. E., Evans, J. S., Fox, J. L., Deighan, J., Jain, S. K., and Schneider, N. M. (2019). Detection of the nitric oxide dayglow on Mars by MAVEN/IUVS. J. Geophys. Res.:Planets, 124(5), 1226–1237. https://doi.org/10.1029/2019JE005945

Stewart, A. I. (1972). Mariner 6 and 7 ultraviolet spectrometer experiment: Implications of CO2+, CO and O airglow. J. Geophys. Res., 77(1), 54–68. https://doi.org/10.1029/JA077i001p00054

Stewart, A. I., Barth, C. A., Hord, C. W., and Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Structure of Mars’ upper atmosphere. Icarus, 17(2), 469–474. https://doi.org/10.1016/0019-1035(72)90012-7

Strausberg, M. J., Wang, H. Q., Richardson, M. I., Ewald, S. P., and Toigo, A. D. (2005). Observations of the initiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res.:Planets, 110(E2), E02006. https://doi.org/10.1029/2004JE002361

Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res.:Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512

Wu, Z. P., Li, T., Zhang, X., Li, J., and Cui, J. (2020). Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms. Nat. Commun., 11, 614. https://doi.org/10.1038/s41467-020-14510-x

Yao, M. J., Cui, J., Wu, X. S., Huang, Y. Y., and Wang, W. R. (2019). Variability of the Martian ionosphere from the MAVEN radio occultation science experiment. Earth Planet. Phys., 3(4), 283–289. https://doi.org/10.26464/epp2019029

[1]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[2]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[3]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[4]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[5]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[6]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[7]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[8]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[9]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[10]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[11]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[12]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[13]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[14]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[15]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[16]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[17]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[18]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[19]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[20]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Solar control of CO2 + ultraviolet doublet emission on Mars

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang