Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yue, X. A., Wan, W. X., Xiao, H., Zeng, L. Q., Ke, C. H., Ning, B. Q., Ding, F., Zhao, B. Q., Jin, L., Li, C., Li, M. Y., Wang, J. Y., Hao, H. L. and Zhang, N. (2020). Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar. Earth Planet. Phys., 4(6), 1–9doi: 10.26464/epp2020063

doi: 10.26464/epp2020063

SPACE PHYSICS: IONOSPHERIC PHYSICS

Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

5. 

Nanjing Research Institute of Electronics Technology, Nanjing 210039, China

Corresponding author: XinAn Yue, yuexinan@mail.iggcas.ac.cnLingQi Zeng, zlq@mail.iggcas.ac.cn

Received Date: 2020-05-26
Web Publishing Date: 2020-08-01

In the past decades, the Incoherent Scatter Radar (ISR) has been demonstrated to be one of the most powerful instruments for ionosphere monitoring. The Institute of Geology and Geophysics at the Chinese Academy of Sciences was founded to build a state-of-the-art phased-array ISR at Sanya (18.3°N, 109.6°E), a low-latitude station on Hainan Island, named the Sanya ISR (SYISR). As a first step, a prototype radar system consisting of eight subarrays (SYISR-8) was built to reduce the technical risk of producing the entire large array. In this work, we have summarized the preliminary experimental results based on the SYISR-8. The amplitude and phase among 256 channels were first calibrated through an embedded internal monitoring network. The mean oscillation of the amplitude and phase after calibration were about 1 dB and 5°, respectively, which met the basic requirements. The beam directivity was confirmed by crossing screen of the International Space Station. The SYISR-8 was further used to detect the tropospheric wind profile and meteors. The derived winds were evaluated by comparison with independent radiosonde and balloon-based GPS measurements. The SYISR-8 was able to observe several typical meteor echoes, such as the meteor head echo, range-spread trail echo, and specular trail echo. These results confirmed the validity and reliability of the SYISR-8 system, thereby reducing the technical risk of producing the entire large array of the SYISR to some extent.

Key words: incoherent scatter radar, SYISR, ionosphere, phased array, beam direction, tropospheric wind, meteor

Benjamin, S. G., Schwartz, B. E., Szoke, E. J., and Koch, S. E. (2004). The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85(12), 1871–1886. https://doi.org/10.1175/BAMS-85-12-1871

Bowles, K. L. (1958). Observation of vertical-incidence scatter from the ionosphere at 41 Mc/sec. Phys. Rev. Lett., 1(12), 454–455. https://doi.org/10.1103/PhysRevLett.1.454

Cohen, M. H. (2009). Genesis of the 1000-foot Arecibo dish. J. Astron. Hist. Heritage, 12(2), 141–152.

Ding, Z. H., Wu, J., Xu, Z. W., Xu, B., and Dai, L. D. (2018). The Qujing incoherent scatter radar: system description and preliminary measurements. Earth, Planets and Space, 70(1), 87. https://doi.org/10.1186/s40623-018-0859-8

Dougherty, J. P., and Farley, D. T. (1960). A theory of incoherent scattering of radio waves by a plasma. Proc. Roy. Soc. A, 259(1296), 79–99. https://doi.org/10.1098/rspa.1960.0212

Dyrud, L. P., Oppenheim, M. M., Close, S., and Hunt, S. (2002). Interpretation of non-specular radar meteor trails. Geophys. Res. Lett., 29(21), 2012. https://doi.org/10.1029/2002GL015953

Fukao, S., Sato, T., Tsuda, T., Kato, S., Wakasugi, K., and Makihira, T. (1985). The MU radar with an active phased array system: 1. Antenna and power amplifiers. Radio Sci., 20(6), 1155–1168. https://doi.org/10.1029/rs020i006p01155

Fulton, C., and Chappell, W. (2009). Calibration techniques for digital phased arrays. In Proceedings of 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (pp. 1-10). Tel Aviv, Israel: IEEE. https://doi.org/10.1109/COMCAS.2009.5385979222

Gordon, W. E. (1958). Incoherent scattering of radio waves by free electrons with applications to space exploration by radar. Proc. IRE, 46(11), 1824–1829. https://doi.org/10.1109/JRPROC.1958.286852

Hagfors, T. (1961). Density fluctuations in a plasma in a magnetic field, with applications to the ionosphere. J. Geophys. Res., 66(6), 1699–1712. https://doi.org/10.1029/JZ066i006p01699

Kudeki, E., and Milla, M. A. (2011). Incoherent scatter spectral theories—Part I: a general framework and results for small magnetic aspect angles. IEEE Trans. Geosci. Remote Sens., 49(1), 315–328. https://doi.org/10.1109/TGRS.2010.2057252

Kuehnke, L. (2001). Phased array calibration procedures based on measured element patterns. In Proceedings of the 2001 11th International Conference on Antennas and Propagation (pp. 660-663). Manchester, UK: IEEE. https://doi.org/10.1049/cp:20010372222

Lindseth, B., Brown, W. O. J., Jordan, J., Law, D., Hock, T., Cohn, S. A., and Popovic, Z. (2012). A new portable 449-MHz spaced antenna wind profiler radar. IEEE Trans. Geosci. Remote Sens., 50(9), 3544–3553. https://doi.org/10.1109/TGRS.2012.2184837

Liu, J. X., Yu, X., Liang, C. J., Sun, K., and Sun, H. J. (2011). Calibration method of amplitude and phase consistency of digital variable polarization radar receiving system. In Proceedings of 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics (pp. 44-47). Beijing, China: IEEE. https://doi.org/10.1109/ICMTCE.2011.5915162222

Mailloux, R. J. (2005). Phased Array Antenna Handbook (2nd ed). Boston: Artech House.222

Mathews, J. D., Briczinski, S. J., Meisel, D. D., and Heinselman, C. J. (2008). Radio and meteor science outcomes from comparisons of meteor radar observations at AMISR poker flat, sondrestrom, and Arecibo. Earth Moon Planets, 102(1-4), 365–372. https://doi.org/10.1007/s11038-007-9168-0

McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., Engler, N., Gustavsson, B., Heinselman, C., … Vierinen, J. (2015). The science case for the EISCAT_3D radar. Prog. Earth Planet. Sci., 2(1), 21. https://doi.org/10.1186/s40645-015-0051-8

Pellinen-Wannberg, A., and Wannberg, G. (1994). Meteor observations with the European incoherent scatter UHF radar. J. Geophys. Res., 99(A6), 11379–11390. https://doi.org/10.1029/94ja00274

Röttger, J., and Liu, C. H. (1978). Partial reflection and scattering of VHF radar signals from the clear atmosphere. Geophys. Res. Lett., 5(5), 357–360. https://doi.org/10.1029/gl005i005p00357

Röttger, J., Wannberg, U. G., and van Eyken, A. P. (1995). The EISCAT scientific association and the EISCAT Svalbard radar project. J. Geomag. Geoelectr., 47(8), 669–679. https://doi.org/10.5636/jgg.47.669

Strauch, R. G., Merritt, D. A., Moran, K. P., Earnshaw, K. B., and van de Kamp, D. (1984). The Colorado wind-profiling network. J. Atmos. Oceanic Technol., 1(1), 37–49. https://doi.org/10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2

Thomson, J. J. (1906). Conduction of Electricity Through Gases. Cambridge: Cambridge University Press.222

Valentic, T., Buonocore, J., Cousins, M., Heinselman, C., Jorgensen, J., Kelly, J., Malone, M., Nicolls, M., and van Eyken, A. (2013). AMISR the advanced modular incoherent scatter radar. In Proceedings of 2013 IEEE International Symposium on Phased Array Systems and Technology (pp. 659-663). Waltham, USA: IEEE. https://doi.org/10.1109/ARRAY.2013.6731908222

Zeng, L. Q., and Yi, F. (2011). Lidar observations of Fe and Na meteor trails with high temporal resolution. J. Atmos. Solar Terr. Phys., 73(16), 2367–2372. https://doi.org/10.1016/j.jastp.2011.08.002

Zhou, Q. H., Mathews, J. D., and Nakamura, T. (2001). Implications of meteor observations by the MU radar. Geophys. Res. Lett., 28(7), 1399–1402. https://doi.org/10.1029/2000GL012504

[1]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[2]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[3]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[4]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[5]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[6]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[7]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[8]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[9]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[10]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

[11]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[12]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[13]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049

[14]

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

[15]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[16]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[17]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[18]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: a universal time effect, Earth and Planetary Physics. doi: 10.26464/epp2021004

[19]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics. doi: 10.26464/epp2020061

[20]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang