Citation:
Li, J., Wu, Z. P., Li, T., Zhang, X. and Gui, J. (2020). The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3. Earth Planet. Phys., 4(6), 550–564doi: 10.26464/epp2020062
2020, 4(6): 550-564. doi: 10.26464/epp2020062
The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3
1. | Planetary Environmental and Astrobiological Research Laboratory, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China |
2. | Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
3. | Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA |
4. | Chinese Academy of Sciences Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
5. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
In recent studies of the Martian atmosphere, strong diurnal variation in the dust was discovered in the southern hemisphere during major dust storms, which provides strong evidence that the commonly recognized meridional transport process is driven by thermal tides. This process, when coupled with deep convection, could be an important part of the short-term atmospheric dynamics of water escape. However, the potential of this process to alter the horizontal distribution of moist air has not been systematically investigated. In this work, we conducted pre-research on the horizontal transport of water vapor associated with the migrating diurnal tide (DW1) at 50 Pa in the upper troposphere during major dust storms based on the Mars Climate Database (MCD) 5.3, a state-of-the-art database for Martian atmospheric research that has been validated as simulating the relevant short-period atmospheric dynamics well. We found westward-propagating diurnal patterns in the global water vapor front during nearly all the major dust storms from Martian years (MYs) 24 to 32. Statistical and correlation analyses showed that the diurnal transport of water vapor during global and A-season regional dust storms is dominated by the DW1. The effect of the tidal transport of water vapor varies with the types of dust storms in different seasons. During regional dust storms, the tidal transport induces only limited diurnal motion of the water vapor. However, the horizontal tidal wind tends to increase the abundance of daytime water vapor at mid- to low latitudes during the MY 28 southern summer global dust storm while decreasing it during the MY 25 southern spring global dust storm. The tidal transport process during these two global dust storms can induce opposite effects on water escape.
Bandfield, J. L. (2007). High-resolution subsurface water-ice distributions on Mars. Nature, 447(7140), 64–67. https://doi.org/10.1038/nature05781 |
Bibring, J. P., Langevin, Y., Poulet, F., Gendrin, A., Gondet, B., Berthé, M., Soufflot, A., Drossart, P., Combes, M., … the OMEGA team. (2004). Perennial water ice identified in the south polar cap of Mars. Nature, 428(6983), 627–630. https://doi.org/10.1038/nature02461 |
Chaffin, M. S., Chaufray, J. Y., Stewart, I., Montmessin, F., Schneider, N. M., and Bertaux, J. L. (2014). Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett., 41(2), 314–320. https://doi.org/10.1002/2013gl058578 |
Chaffin, M. S., Deighan, J., Schneider, N. M., and Stewart, A. I. F. (2017). Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci., 10(3), 174–178. https://doi.org/10.1038/ngeo2887 |
Chapman, S., and Lindzen, R. S. (1970). Atmospheric Tides (pp. 200). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-010-3399-2222 |
Craddock, R. A., and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res.: Planets, 107(E11), 5111. https://doi.org/10.1029/2001JE001505 |
Fedorova, A., Korablev, O., Bertaux, J. L., Rodin, A., Kiselev, A., and Perrier, S. (2006). Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. J. Geophys. Res.: Planets, 111(E9), E09S08. https://doi.org/10.1029/2006JE002695 |
Fedorova, A., Bertaux, J. L., Betsis, D., Montmessin, F., Korablev, O., Maltagliati, L., and Clarke, J. (2018). Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus, 300, 440–457. https://doi.org/10.1016/j.icarus.2017.09.025 |
Forbes, J. M. (1995). Tidal and planetary waves. In R. M. Johnson, et al. (Eds.), The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (pp. 67-87). Washington, DC: AGU. https://doi.org/10.1029/GM087p0067222 |
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J. P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res.: Planet, 104(E10), 24155–24175. https://doi.org/10.1029/1999je001025 |
Guzewich, S. D., Talaat, E. R., Toigo, A. D., Waugh, D. W., and McConnochie, T. H. (2013). High-altitude dust layers on Mars: Observations with the thermal emission spectrometer. J. Geophys. Res.: Planets, 118(6), 1177–1194. https://doi.org/10.1002/jgre.20076 |
Guzewich, S. D., Wilson, R. J., McConnochie, T. H., Toigo, A. D., Banfield, D. J., and Smith, M. D. (2014). Thermal tides during the 2001 Martian global-scale dust storm. J. Geophys. Res.: Planets, 119(3), 506–519. https://doi.org/10.1002/2013je004502 |
Haberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N. A., Grin, E. A., Zent, A. P., and Quinn, R. (2001). On the possibility of liquid water on present-day Mars. J. Geophys. Res.: Planets, 106(E10), 23317–23326. https://doi.org/10.1029/2000JE001360 |
Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., and Zurek, R. W. (2017). The Atmosphere and Climate of Mars. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781139060172222 |
Hale, A. S., Bass, D. S., and Tamppari, L. K. (2005). Monitoring the perennial Martian northern polar cap with MGS MOC. Icarus, 174(2), 502–512. https://doi.org/10.1016/j.icarus.2004.10.033 |
Heavens, N. G., Johnson, M. S., Abdou, W. A., Kass, D. M., Kleinböhl, A., McCleese, D. J., Shirley, J. H., and Wilson, R. J. (2014). Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere. J. Geophys. Res.: Planets, 119(8), 1748–1774. https://doi.org/10.1002/2014JE004619 |
Heavens, N. G., Kleinböhl, A., Chaffin, M. S., Halekas, J. S., Kass, D. M., Hayne, P. O., McCleese, D. J., Piqueux, S., Shirley, J. H., and Schofield, J. T. (2018). Hydrogen escape from Mars enhanced by deep convection in dust storms. Nat. Astron., 2(2), 126–132. https://doi.org/10.1038/s41550-017-0353-4 |
Heavens, N. G., Kass, D. M., Shirley, J. H., Piqueux, S., and Cantor, B. A. (2019). An observational overview of dusty deep convection in Martian dust storms. J. Atmos. Sci., 76(11), 3299–3326. https://doi.org/10.1175/Jas-D-19-0042.1 |
Hinson, D. P., and Wilson, R. J. (2004). Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res.: Planet, 109(E1), E01002. https://doi.org/10.1029/2003je002129 |
Jakosky, B. M., and Phillips, R. J. (2001). Mars’ volatile and climate history. Nature, 412(6843), 237–244. https://doi.org/10.1038/35084184 |
Jeans, J. H. (1921). The Dynamical Theory of Gases (3rd ed). Cambridge: Cambridge University Press.222 |
Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T., and Smith, M. D. (2016). Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett., 43(12), 6111–6118. https://doi.org/10.1002/2016GL068978 |
Kleinböhl, A., John Wilson, R., Kass, D., Schofield, J. T., and McCleese, D. J. (2013). The semidiurnal tide in the middle atmosphere of Mars. Geophys. Res. Lett., 40(10), 1952–1959. https://doi.org/10.1002/grl.50497 |
Kleinböhl, A., Spiga, A., Kass, D. M., Shirley, J. H., Millour, E., Montabone, L., and Forget, F. (2020). Diurnal variations of dust during the 2018 global dust storm observed by the Mars Climate Sounder. J. Geophys. Res.: Planets, 125(1), e2019JE006115. https://doi.org/10.1029/2019JE006115 |
Madeleine, J. B., Forget, F., Millour, E., Montabone, L., and Wolff, M. J. (2011). Revisiting the radiative impact of dust on Mars using the LMD global climate model. J. Geophys. Res.: Planets, 116(E11), E11010. https://doi.org/10.1029/2011je003855 |
Martin-Torres, F. J., Zorzano, M. P., Valentín-Serrano, P., Harri, A. M., Genzer, M., Kemppinen, O., Rivera-Valentin, E. G., Jun, I., Wray, J., … Vaniman, D. (2015). Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci., 8(5), 357–361. https://doi.org/10.1038/ngeo2412 |
McCleese, D. J., Heavens, N. G., Schofield, J. T., Abdou, W. A., Bandfield, J. L., Calcutt, S. B., Irwin, P. G. J., Kass, D. M., Kleinböhl, A., … Zurek, R. W. (2010). Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res.: Planets, 115(E12), E12016. https://doi.org/10.1029/2010je003677 |
McKay, C. P. (1997). The search for life on mars. In D. C. B. Whittet (Ed.), Planetary and Interstellar Processes Relevant to the Origins of Life (pp. 263-289). Dordrecht: Springer. https://doi.org/10.1007/978-94-015-8907-9_14222 |
Millour, E., et al. (2018). The Mars Climate Database (version 5.3). Paper presented at From Mars Express to ExoMars Scientific Workshop. Madrid, Spain: ESA-ESAC.222 |
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., … Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034 |
Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., and Clancy, R. T. (1994). A photochemical model of the Martian atmosphere. Icarus, 111(1), 124–150. https://doi.org/10.1006/icar.1994.1137 |
Navarro, T., Madeleine, J. B., Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A. (2014). Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res.: Planets, 119(7), 1479–1495. https://doi.org/10.1002/2013je004550 |
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987). The case for a wet, warm climate on early Mars. Icarus, 71(2), 203–224. https://doi.org/10.1016/0019-1035(87)90147-3 |
She, C. Y., Krueger, D. A., Yuan, T., and Oberheide, J. (2016). On the polarization relations of diurnal and semidiurnal tide in the mesopause region. J. Atmos. Solar-Terr. Phys., 142, 60–71. https://doi.org/10.1016/j.jastp.2016.02.024 |
Shirley, J. H., and Mischna, M. A. (2017). Orbit-spin coupling and the interannual variability of global-scale dust storm occurrence on Mars. Planet. Space Sci., 139, 37–50. https://doi.org/10.1016/j.pss.2017.01.001 |
Smith, M. D. (2008). Spacecraft observations of the Martian atmosphere. Annu. Rev. Earth Planet. Sci., 36, 191–219. https://doi.org/10.1146/annurev.earth.36.031207.124334 |
Trokhimovskiy, A., Fedorova, A., Korablev, O., Montmessin, F., Bertaux, J. L., Rodin, A., and Smith, M. D. (2015). Mars’ water vapor mapping by the SPICAM IR spectrometer: Five martian years of observations. Icarus, 251, 50–64. https://doi.org/10.1016/j.icarus.2014.10.007 |
Vandaele, A. C., Korablev, O., Daerden, F., Aoki, S., Thomas, I. R., Altieri, F., López-Valverde, M., Villanueva, G., Liuzzi, G., … ACS Science Team. (2019). Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 568(7753), 521–525. https://doi.org/10.1038/s41586-019-1097-3 |
Wang, C., Forget, F., Bertrand, T., Spiga, A., Millour, E., and Navarro, T. (2018). Parameterization of rocket dust storms on mars in the LMD martian GCM: Modeling details and validation. J. Geophys. Res.: Planets, 123(4), 982–1000. https://doi.org/10.1002/2017je005255 |
Wang, H. Q., and Richardson, M. I. (2015). The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus, 251, 112–127. https://doi.org/10.1016/j.icarus.2013.10.033 |
Wilson, R. J., Neumann, G. A., and Smith, M. D. (2007). Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett., 34(2), L02710. https://doi.org/10.1029/2006gl027976 |
Wu, Z. P., Li, T., and Dou, X. K. (2015). Seasonal variation of Martian middle atmosphere tides observed by the Mars Climate Sounder. J. Geophys. Res.: Planets, 120(12), 2206–2223. https://doi.org/10.1002/2015JE004922 |
Wu, Z. P., Li, T., and Dou, X. K. (2017). What causes seasonal variation of migrating diurnal tide observed by the Mars Climate Sounder?. J. Geophys. Res.: Planets, 122(6), 1227–1242. https://doi.org/10.1002/2017JE005277 |
Wu, Z. P., Li, T., Zhang, X., Li, J., and Cui, J. (2020). Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms. Nat. Commun., 11(1), 614. https://doi.org/10.1038/s41467-020-14510-x |
Zahnle, K., Haberle, R. M., Catling, D. C., and Kasting, J. F. (2008). Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res.: Planets, 113(E11), E11004. https://doi.org/10.1029/2008je003160 |
[1] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[2] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[3] |
Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036 |
[4] |
XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052 |
[5] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[6] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049 |
[7] |
Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020 |
[8] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[9] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[10] |
Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039 |
[11] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[12] |
Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029 |
[13] |
TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010 |
[14] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[15] |
Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006 |
[16] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[17] |
Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031 |
[18] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[19] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[20] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)