Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Jiang, C. H., Wei, L. H., Yang, G. B., Zhou, C. and Zhao, Z. Y. (2020). Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities. Earth Planet. Phys., 4(6), 565–570. http://doi.org/10.26464/epp2020059

2020, 4(6): 565-570. doi: 10.26464/epp2020059

SPACE PHYSICS: IONOSPHERIC PHYSICS

Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities

School of Electronic Information, Wuhan University, Wuhan 430072, China

Corresponding author: ChunHua Jiang, chuajiang@whu.edu.cn

Received Date: 2020-06-26
Web Publishing Date: 2020-09-10

The characteristics of high-frequency (HF) electromagnetic (EM) wave propagation can be affected when EM waves propagate in the ionosphere. When ionospheric irregularities appear in the ionosphere, they can have a serious impact on the propagation of HF EM waves. In this study, the propagation of HF EM waves in ionospheric irregularities was investigated by numerical simulation. First, a two-dimensional model of plasma bubbles was used to produce ionospheric irregularities in the ionosphere. A ray-tracing method was then utilized to simulate the propagation of HF radio waves in these ionospheric irregularities. Results showed that the propagation of HF radio waves in the ionosphere was more complex in ionospheric irregularities than without ionospheric irregularities. In addition, corresponding ionograms were synthesized by radio rays propagated in the ionosphere with these irregularities. The synthesized ionograms were then compared with the experimental ionograms recorded by an ionosonde. Results showed that spread F could be simulated on the ionograms when ionospheric irregularities occurred in the ionosphere. This result was consistent with the ionosonde observations.

Key words: electromagnetic waves, ray tracing, numerical simulation, ionospheric irregularities, ionogram

Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. Terr. Phys., 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7

Basu, S., and Kelley, M. C. (1979). A review of recent observations of equatorial scintillations and their relationship to current theories of F region irregularity generation. Radio Sci., 14(3), 471–485. https://doi.org/10.1029/RS014i003p00471

Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. Terr. Magn. Atmos. Electr., 43(3), 249–256. https://doi.org/10.1029/TE043i003p00249

Cervera, M. A., and Harris, T. J. (2014). Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves. J. Geophys. Res. Space Phys., 119(1), 431–440. https://doi.org/10.1002/2013JA019247

Croft, T. A., and Hoogansian, H. (1968). Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field. Radio Sci., 3(1), 69–74. https://doi.org/10.1002/rds19683169

Dungey, J. W. (1956). Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys., 9(5-6), 304–310. https://doi.org/10.1016/0021-9169(56)90148-9

Dyson, P. L., and Bennett, J. A. (1988). A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies. J. Atmos. Terr. Phys., 50(3), 251–262. https://doi.org/10.1016/0021-9169(88)90074-8

Fejer, B. G., and Kelley, M. C. (1980). Ionospheric irregularities. Rev. Geophys., 18(2), 401–454. https://doi.org/10.1029/RG018i002p00401

Huang, X. Q., and Reinisch, B. W. (2006). Real-time HF ray tracing through a tilted ionosphere. Radio Sci., 41(5), RS5S47. https://doi.org/10.1029/2005RS003378

Jiang, C. H., and Zhao, Z. Y. (2019). Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Phys. Sin. (in Chinese) , 68(19), 199401. https://doi.org/10.7498/aps.68.20190173

Jiang, C. H., Yang, G. B., Liu, J., and Zhao, Z. Y. (2019). A study of the F2 layer stratification on ionograms using a simple model of TIDs. J. Geophys. Res. Space Phys., 124(2), 1317–1327. https://doi.org/10.1029/2018JA026040

Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics (2nd ed). Amsterdam: Elsevier.222

Krall, J., Huba, J. D., and Fritts, D. C. (2013). On the seeding of equatorial spread F by gravity waves. Geophys. Res. Lett., 40(4), 661–664. https://doi.org/10.1002/grl.50144

Kudeki, E. (2010). Applications of radiowave propagation. USA: University of Illinois at Urbana-Champaign.222

Mathur, N. C., and Pandey, C. R. P. (1977). Ray tracing study of effects of Ionospheric irregularities on HF and VHF radio waves. IETE J. Res., 23(3), 121–123. https://doi.org/10.1080/03772063.1977.11451283

Ossakow, S. L. (1981). Spread-F theories—a review. J. Atmos. Terr. Phys., 43(5-6), 437–452. https://doi.org/10.1016/0021-9169(81)90107-0

Paul, A. K., Smith, G. H., and Wright, J. W. (1968). Ray-tracing synthesis of ionogram observations of a large local disturbance in the ionosphere. Radio Sci., 3(1), 15–26. https://doi.org/10.1002/rds19683115

Psiaki, M. L. (2019). Ionosphere ray tracing of radio-frequency signals and solution sensitivities to model parameters. Radio Sci., 54(8), 738–757. https://doi.org/10.1029/2019RS006792

Scotto, C., Pezzopane, M., and Zolesi, B. (2012). Estimating the vertical electron density profile from an ionogram: on the passage from true to virtual heights via the target function method. Radio Sci., 47(1), RS1007. https://doi.org/10.1029/2011RS004833

Sokolov, A. S., Lukin, D. S., and Harris, V. G. (2016). Recent advances in numerical simulation of propagation of EM waves in the earth's ionosphere. IEEE Geosci. Remote Sens. Lett., 13(10), 1433–1437. https://doi.org/10.1109/LGRS.2016.2586468

Tsunoda, R. T. (2008). Satellite traces: an ionogram signature for large-scale wave structure and a precursor for equatorial spread F. Geophys. Res. Lett., 35(20), L20110. https://doi.org/10.1029/2008GL035706

Yokoyama, T. (2017). A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting. Prog. Earth Planet. Sci., 4(1), 37. https://doi.org/10.1186/s40645-017-0153-6

Zalesak, S. T., and Ossakow, S. L. (1980). Nonlinear equatorial spread F: spatially large bubbles resulting from large horizontal scale initial perturbations. J. Geophys. Res. Space Phys., 85(A5), 2131–2142. https://doi.org/10.1029/JA085iA05p02131

Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res. Space Phys., 87(A1), 151–166. https://doi.org/10.1029/JA087iA01p00151

[1]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of Kilometer-Scale Ionospheric Irregularities at Mars, Earth and Planetary Physics. doi: 10.26464/epp2022011

[2]

Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042

[3]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[4]

Safi Ullah, HaiLong Li, Abdur Rauf, Lin Meng, Bin Wang, ShuCan Ge, MaoYan Wang, 2021: Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region, Earth and Planetary Physics, 5, 196-204. doi: 10.26464/epp2021016

[5]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[6]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[7]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[8]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[9]

BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033

[10]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[11]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

[12]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[13]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[14]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[15]

MingChen Sun, QingLin Zhu, Xiang Dong and JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics. doi: 10.26464/epp2022013

[16]

DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014

[17]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[18]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[19]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[20]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao