Citation:
Peng, Y. Q., Zhang, L. B., Cai, Z. G., Wang, Z. G., Jiao, H. L., Wang, D. L., Yang, X. T., Wang, L. G., Tan, X., Wang, F., Fang, J., Sun, Z. L., Feng, H. L., Huang, X. R., Zhu, Y., Chen, M., Li, L. H., and Li, Y. H. (2020). Overview of the Mars climate station for Tianwen-1 mission. Earth Planet. Phys., 4(4), 371–383. http://doi.org/10.26464/epp2020057
2020, 4(4): 371-383. doi: 10.26464/epp2020057
Overview of the Mars climate station for Tianwen-1 mission
1. | Beijing Research Institute of Telemetry, Beijing 100076, China |
2. | National Space Science Center, Chinese Academy of Sciences, Beijing 100012, China |
3. | National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
4. | Chinese Academy of Aerospace Electronics Technology, Beijing 100012, China |
The background and scientific objectives of the Mars Climate Station (MCS) for Tianwen-1 are introduced, accompanied by a comparative review of the status of related meteorological observation missions and of advanced sensing technologies. As one of the China Tianwen-1 Mission’s principal scientific payloads, the MCS contains four measurement sensors and one electronic processing unit that are specially designed to measure local temperature, pressure, wind, and sound on the Martian surface. The MCS’s measurement principles, technical schemes, ground calibration techniques, and adaptability evaluation to the Mars surface environment of MCS are introduced in details. The conclusion presents measurement performance specifications of the MCS, based on ground test results, that will provide guidance to future research based on data from the Tianwen-1 and later Mars missions.
Chamberlain, T. E., Cole, H. L., Dutton, R. G., Greene, G. C., and Tillman, J. E. (1976). Atmospheric measurements on Mars: the Viking Meteorology Experiment. Bull. Amer. Meteor. Soc., 57(9), 1094–1105. https://doi.org/10.1175/1520-0477(1976)057<1094:AMOMTV>2.0.CO;2 |
Delory, G. T., Luhmann, J., Friedman, L., and Betts, B. (2007). Development of the first audio microphone for use on the surface of mars. J. Acoust. Soc. Am., 121(5), 3116. https://doi.org/10.1121/1.4782072 |
Domínguez, M., Ricart, J., Kowalski, L., Torres, J., Navarro, S., Romeral, J., and Castañer, L. (2008). A hot film anemometer for the Martian atmosphere. Planet. Space Sci., 56(8), 1169–1179. https://doi.org/10.1016/j.pss.2008.02.013 |
Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., Haberle, R., Harri, A.-M., Jiménez, V., … Martín-Torres, J. (2012). REMS: The environmental sensor suite for the mars science laboratory rover. Space Sci. Rev., 170(1–4), 583–640. https://doi.org/10.1007/s11214-012-9921-1 |
Gunnlaugsson, H. P., Holstein-Rathlou, C., Merrison, J. P., Jensen, S. K., Lange, C. F., Larsen, S. E., Madsen, M. B., Nørnberg, P., Bechtold, H., … Smith, P. (2008). Telltale wind indicator for the Mars Phoenix lander. J. Geophys. Res. Planets, 113(E3), E00A04. https://doi.org/10.1029/2007JE003008 |
Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S. (2007). Fundamentals of Heat and Mass Transfer (pp. 350). Hoboken: John Wiley & Sons, Inc.222 |
InSight Mission News. (2018). NASA InSight Lander 'Hears' Martian Winds. http://mars.nasa.gov/news/8397/nasa-insight-lander-hears-martian-winds/?site=insight.222 |
InSight Mission News. (2019). NASA’s InSight 'Hears' Peculiar Sounds on Mars. http://mars.nasa.gov/news/8517/nasa-insight-lander-hears-peculiar-sounds-on-mars/?site=insight.222 |
Kasting, J. F. (1991). CO2 condensation and the climate of early Mars. Icarus, 94(1), 1–13. https://doi.org/10.1016/0019-1035(91)90137-I |
Lorenz, R. D. (2004). Planetary probe entry and descent instrumentation-a review. In Proceedings of the International Workshop on Planetary Entry and Descent Trajectory Reconstruction and Science (pp. 49–56). Lisbon: European Space Agency.222 |
Mahaffy, P. R., Webster, C. R., Atreya, S. K., Franz, H., Wong, M., Conrad, P. G., Harpold, D., Jones, J. J., Leshin, L. A., … MSL Science Team. (2013). Abundance and isotopic composition of gases in the Martian Atmosphere from the Curiosity Rover. Science, 341(6143), 263–266. https://doi.org/10.1126/science.1237966 |
Mueller, D. W. Jr., and Abu-Mulaweh, H. I. (2006). Prediction of the temperature in a fin cooled by natural convection and radiation. Appl. Therm. Eng., 26(14–15), 1662–1668. https://doi.org/10.1016/j.applthermaleng.2005.11.014 |
Murdoch, N., Chide, B., Lasue, J., Cadu, A., Sournac, A., Bassas-Portús, M., Jacob, X., Merrison, J., Iversen, J. J., … Mimoun, D. (2019). Laser-induced breakdown spectroscopy acoustic testing of the Mars 2020 microphone. Planet. Space Sci., 165, 260–271. https://doi.org/10.1016/j.pss.2018.09.009 |
Pont, G., et al. (2018). Seis on his way to Mars. 69th IAC-18, A3, 3B, 5, x44032, 1–9.222 |
Seiff, A., Tillman, J. E., Murphy, J. R., Schofield, J. T., Crisp, D, Barnes, J. R., LaBaw, C., Mahoney, C., Mihalov, J. D., … Haberle, R. (1997). The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. Planets, 102(E2), 4045–4056. https://doi.org/10.1029/96JE03320 |
Sullivan, R., Greeley, R., Kraft, M., Wilson, G., Golombek, M., Herkenhoff, K., Murphy, J., and Smith, P. (2000). Results of the Imager for Mars Pathfinder windsock experiment. J. Geophys. Res. Planets, 105(E10), 24547–24562. https://doi.org/10.1029/1999JE001234 |
Taylor, P. A., Catling, D. C., Daly, M., Dickinson, C. S., Gunnlaugsson, H. P., Harri, A. M., and Lange, C. F. (2008). Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res. Planets, 113(E3), E00A10. https://doi.org/10.1029/2007JE003015 |
Towner, M. C., Patel, M. R., Ringrose, T. J., Zarnecki, J. C., Pullan, D., Sims, M. R., Haapanala, S., Harri, A.-M., Polkko, J., … Garry, J. R. C. (2004). The Beagle 2 environmental sensors: science goals and instrument description. Planet. Space Sci., 52(13), 1141–1156. https://doi.org/10.1016/j.pss.2004.07.015 |
Williams, J. P. (2001). Acoustic environment of the Martian surface. J. Geophys. Res. Planets, 106(E3), 5033–5041. https://doi.org/10.1029/1999JE001174 |
Zhang, J. R., and Zhao, T. Y. (1987). Handbook of Thermophysical Properties of Engineering Commonly used Materials (pp. 272) (in Chinese). Beijing: New Times Press.222 |
[1] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[2] |
GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056 |
[3] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[4] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[5] |
AiBing Zhang, LingGao Kong, WenYa Li, Lei Li, BinBin Tang, ZhaoJin Rong, Yong Wei, JiJie Ma, YiTeng Zhang, LiangHai Xie, YuXian Wang, JianSen He, Bin Liu, WenJing Wang, Bin Su, JiaWei Li, Xu Tan, Fang Wang, TaiFeng Jin, FuHao Qiao, Peter Wurz, Yan Zhu, YunFei Bai, YiRen Li, XinBo Zhu, YueQiang Sun, YongLiao Zou, Chi Wang, 2022: Tianwen-1 MINPA observations in the solar wind, Earth and Planetary Physics, 6, 1-9. doi: 10.26464/epp2022014 |
[6] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[7] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[8] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[9] |
JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038 |
[10] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[11] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[12] |
WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030 |
[13] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[14] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[15] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[16] |
Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051 |
[17] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[18] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[19] |
A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006 |
[20] |
JianXun Shen, Yan Chen, Yu Sun, Li Liu, YongXin Pan, Wei Lin, 2022: Detection of biosignatures in terrestrial Mars analogs: Strategical and technical assessments, Earth and Planetary Physics. doi: 10.26464/epp2022042 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)