Citation:
Kong, L. G., Zhang, A. B., Tian. Z., Zheng, X. Z., Wang, W. J., Liu, B., Wurz, P., Piazza, D., Etter, A., Su, B., An, Y. Y., Ding, J. J., Li, W. Y., Liu, Y., Li, L., Li, Y. R., Tan, X. and Sun Y. Q. (2020). Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration. Earth Planet. Phys., 4(4), 333–344. http://doi.org/10.26464/epp2020053
2020, 4(4): 333-344. doi: 10.26464/epp2020053
Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration
1. | National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China |
2. | Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China |
3. | Key Laboratory of Science and Technology on Space Environment Situational Awareness, Chinese Academy of Sciences, Beijing 100190, China |
4. | University of Chinese Academy of Sciences, Beijing 100049, China |
5. | Physics Institute, University of Bern, Bern 3012, Switzerland |
6. | State Key Laboratory of Space Weather, Beijing 100190, China |
7. | University of Science and Technology of China, Hefei 230026, China |
8. | National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
The main objective of the Mars Ion and Neutral Particle Analyzer (MINPA) aboard the Chinese Mars Exploration Mission (Tianwen-1) is to study the solar wind–Mars interaction by measuring the ions and energetic neutral atoms (ENAs) near Mars. The MINPA integrates ion and ENA measurements into one sensor head, sharing the same electronics box. The MINPA utilizes a standard toroidal top-hat electrostatic analyzer (ESA) followed by a time of flight (TOF) unit to provide measurement of ions with energies from 2.8 eV to 25.9 keV and ENAs from 50 eV to 3 keV with a base time resolution of 4 seconds. Highly polished silicon single crystal substrates with an Al2O3 film coating are used to ionize the ENAs into positive ions. These ions can then be analyzed by the ESA and TOF, to determine the energy and masses of the ENAs. The MINPA provides a 360°×90° field of view (FOV) with 22.5°×5.4° angular resolution for ion measurement, and a 360°×9.7° FOV with 22.5°×9.7° angular resolution for ENA measurement. The TOF unit combines a –15 kV acceleration high voltage with ultra-thin carbon foils to resolve H+, He2+, He+, O+, O2+ and CO2+ for ion measurement and to resolve H and O (≥ 16 amu group) for ENA measurement. Here we present the design principle and describe our ground calibration of the MINPA.
Barabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H., Holmström, M., Yamauchi, M., Asamura, K., … Thocaven, J. J. (2006). The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars Express Mission. Space Sci. Rev., 126(1-4), 113–164. https://doi.org/10.1007/s11214-006-9124-8 |
Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J. A. (2007). Martian atmospheric erosion rates. Science, 315(5811), 501–503. https://doi.org/10.1126/science.1134358 |
Carlson, C. W., and McFadden, J. P. (1998). Design and application of imaging plasma instruments. In R. F. Pfaff, et al. (Eds.), Measurement Techniques in Space Plasmas: Particles. Washington: AGU. https://doi.org/10.1029/GM102p0125222 |
Carlsson, E., Fedorov, A., Barabash, S., Budnik, E., Grigoriev, A., Gunell, H., Nilsson, H., Sauvaud, J. A., Lundin, R., … Dierker, C. (2006). Mass composition of the escaping plasma at Mars. Icarus, 182(2), 320–328. https://doi.org/10.1016/j.icarus.2005.09.020 |
Collier, M. R., Moore, T. E., Ogilvie, K. W., Chornay, D., Keller, J. W., Boardsen, S., Burch, J., El Marji, B., Fok, M. C., … Wurz, P. (2001). Observations of neutral atoms from the solar wind. J. Geophys. Res. Space Phys., 106(A11), 24893–24906. https://doi.org/10.1029/2000JA000382 |
Dongfang, X. (2016). China’s first Mars probe made its debut, calling for engineering name and logo. Space Int. (in Chinese) |
Fang, X. H., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. J. (2010). Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields. J. Geophys. Res. Space Phys., 115(A4), A04308. https://doi.org/10.1029/2009JA014929 |
Farmer, C. B., Davies, D. W., Holland, A. L., LaPorte, D. D., and Doms, P. E. (1977). Mars: water vapor observations from the Viking orbiters. J. Geophys. Res., 82(28), 4225–4248. https://doi.org/10.1029/JS082i028p04225 |
Fuselier, S. A., Bochsler, P., Chornay, D., Clark, G., Crew, G. B., Dunn, G., Ellis, S., Friedmann, T., Funsten, H. O., … Zaffke, S. (2009). The IBEX-Lo sensor. Space Sci. Rev., 146(1-4), 117–147. https://doi.org/10.1007/s11214-009-9495-8 |
Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., Brandt, P. C., Gunell, H., Brinkfeldt, K., Lundin, R.,.. Dierker, C. (2006). First ENA observations at Mars: ENA emissions from the Martian Upper Atmosphere. Icarus, 182(2), 424–430. https://doi.org/10.1016/j.icarus.2005.09.019 |
Galli, A., Wurz, P., Kallio, E., Ekenbäck, A., Holmström, M., Barabash, S., Grigoriev, A., Futaana, Y., Fok, M. C., and Gunell, H. (2008). Tailward flow of energetic neutral atoms observed at Mars. J. Geophys. Res. Planets, 113(E12), E12012. https://doi.org/10.1029/2008JE003139 |
Gunell, H., Brinkfeldt, K., Holmström, M., Brandt, P., Barabash, S., Kallio, E., Ekenbäck, A., Futaana, Y., Lundin, R.,.. Dierker, C. (2006). First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath. Icarus, 182(2), 431–438. https://doi.org/10.1016/j.icarus.2005.10.027 |
Hamamatsu. (2006). Technical information of MCP assembly. TMCP9002E01, printed in Japan.222 |
Klumpar, D. M., Möbius, E., Kistler, L. M., Popecki, M., Hertzberg, E., Crocker, K., Granoff, M., Tang, L., Carlson, C. W., … Hovestadt, D. (2001). The time-of-flight energy, angle, mass spectrograph (Teams) experiment for Fast. Space Sci. Rev., 98(1-2), 197–219. https://doi.org/10.1023/A:1013127607414 |
Ledvina, S. A., Brecht, S. H., Brain, D. A., and Jakosky, B. M. (2017). Ion escape rates from Mars: Results from hybrid simulations compared to MAVEN observations. J. Geophys. Res. Space Phys., 122(8), 8391–8408. https://doi.org/10.1002/2016JA023521 |
Lundin, R., Zakharov, A., Pellinen, R., Barabasj, S. W., Borg, H., Dubinin, E. M., Hultqvist, B., Koskinen, H., Liede, I., and Pissarenko, N. (1990). Aspera/Phobos measurements of the ion outflow from the MARTIAN ionosphere. Geophys. Res. Lett., 17(6), 873–876. https://doi.org/10.1029/GL017i006p00873 |
Lundin, R., Barabash, S., and the ASPERA-3 Team. (2009). ASPERA-3: Analyser of space plasmas and energetic neutral atoms. ESA SP-1291: Mars Express–The Scientific Investigations. ESA, 199–215.222 |
McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN suprathermal and thermal ion compostion (STATIC) Instrument. Space Sci. Rev., 195(1–4), 199–256. https://doi.org/10.1007/s11214-015-0175-6 |
McKenna-Lawlor, S., Li, L., Barabash, S., Kudela, K., Balaz, J., Strharsky, I., Brinkfeldt, K., Gunell, H., Shen, C., … Dandouras, I. (2005). The NUADU experiment on TC-2 and the first Energetic Neutral Atom (ENA) images recorded by this instrument. Ann. Geophys., 23(8), 2825–2849. https://doi.org/10.5194/angeo-23-2825-2005 |
Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. Planets, 106(E10), 23419–23427. https://doi.org/10.1029/2000JE001435 |
Moore, T. E., Chornay, D. J., Collier, M. R., Herrero, F. A., Johnson, J., Johnson, M. A., Keller, J. W., Laudadio, J. F., Lobell, J. F., … Wilson, G. R. (2000). The low-energy neutral atom imager for IMAGE. Space Sci. Rev., 91(1–2), 155–195. https://doi.org/10.1023/A:1005211509003 |
Moore, T. E., Collier, M. R., Burch, J. L., Chornay, D. J., Fuselier, S. A., Ghielmetti, A. G., Giles, B. L., Hamilton, D. C., Herrero, F. A.,.. Wurz, P. (2001). Low energy neutral atoms in the magnetosphere. Geophys. Res. Lett., 28(6), 1143–1146. https://doi.org/10.1029/2000GL012500 |
Neugebauer, M., and Snyder, C. W. (1962). Solar plasma experiment. Science, 138(3545), 1095–1097. https://doi.org/10.1126/science.138.3545.1095-a |
Ramstad, R., Futaana, Y., Barabash, S., Nilsson, H., del Campo B, S. M., Lundin, R., and Schwingenschuh, K. (2013). Phobos 2/ASPERA data revisited: Planetary ion escape rate from Mars near the 1989 solar maximum. Geophys. Res. Lett., 40(3), 477–481. https://doi.org/10.1002/grl.50149 |
Rème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin, C., Bouyssou, J., Camus, T., Cuvilo, J., … Balsiger, H. (1997). The cluster ion spectrometry (CIS) experiment. Space Sci. Rev., 79(1-2), 303–350. https://doi.org/10.1023/A:1004929816409 |
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., … Sonnerup, B. (2001). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19(10-12), 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001 |
Rème, H., Dandouras, I., Aoustin, C., Bosqued, J. M., Sauvaud, J. A., Vallat, C., Escoubet, P., Cao, J. B., Shi, J., …the HIA Team. (2005). The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results. Ann. Geophys., 23(8), 2757–2774. https://doi.org/10.5194/angeo-23-2757-2005 |
Riedo, A. (2010). Optimization of the detection-technique for energetic neutral atoms for the BepiColombo mission [Ph. D. thesis]. Bern: University of Bern.222 |
Scheer, J. A., Wahlström, P., and Wurz, P. (2009). Scattering of light molecules from thin Al2O3 films. Nucl. Instrum. Methods Phys. Res. B, 267(16), 2571–2574. https://doi.org/10.1016/j.nimb.2009.05.016 |
Verigin, M. I., Gringauz, K. I., Kotova, G. A., Shutte, N. M., Rosenbauer, H., Livi, S., Richter, A. K., Riedler, W., Schwingenschuh, K., and Szegö, K. (1991). On the problem of the Martian atmosphere dissipation: Phobos: 2 TAUS Spectrometer results. J. Geophys. Res. Space Phys., 96(A11), 19315–19320. https://doi.org/10.1029/90JA02561 |
Wieser, M., and Wurz, P. (2005). Production of a 10 eV-1000 eV neutral particle beam using surface neutralization. Meas. Sci. Technol., 16(12), 2511–2516. https://doi.org/10.1088/0957-0233/16/12/016 |
Wurz, P. (2000). Detection of energetic neutral particles. In K. Scherer, et al. (Eds.), The Outer Heliosphere: Beyond the Planets (pp. 251–288).Germany: Copernicus Gesellschaft e.V., Katlenburg-Lindau.222 |
Wurz, P., Balogh, A., Coffey, V., Dichter, B. K., Kasprzak, W. T., Lazarus, A. J., Lennartsson, W., and McFadden, J. P. (2007). Calibration techniques. In: M. Wüest, et al. (Eds.), Calibration of Particle Instruments in Space Physics (pp. 117-276). Noordwijk: ESA Communications.222 |
Ye, P. J., Sun, Z. Z., Rao, W., and Meng, L. Z. (2017). Mission overview and key technologies of the first Mars probe of China. Sci. China Technol. Sci., 60(5), 649–557. https://doi.org/10.1007/s11431-016-9035-5 |
[1] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[2] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[3] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[4] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[5] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[6] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[7] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[8] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[9] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[10] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[11] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[12] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[13] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[14] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[15] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[16] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[17] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[18] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[19] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[20] |
Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)