Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Lei, T., Yao, H. J., and Zhang, C. (2020). Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples. Earth Planet. Phys., 4(5), 513–522. http://doi.org/10.26464/epp2020050

2020, 4(5): 513-522. doi: 10.26464/epp2020050

SOLID EARTH: SEISMOLOGY

Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples

1. 

Laboratory of Seismology and Physics of the Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng 233500, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

4. 

College of Oceanography, Hohai University, Nanjing 245700, China

Corresponding author: HuaJian Yao, hjyao@ustc.edu.cn

Received Date: 2019-11-02
Web Publishing Date: 2020-07-24

The ratio between vertical and radial amplitudes of Rayleigh waves (hereafter, the Rayleigh wave ZH ratio) is an important parameter used to constrain structures beneath seismic stations. Some previous studies have explored crust and upper mantle structures by joint inversion of the Rayleigh wave ZH ratio and surface wave dispersion. However, all these studies have used a 1-D depth sensitivity kernel, and this kernel may lack precision when the structure varies a great deal laterally. Here, we present a systematic investigation of the two-dimensional (2-D) Rayleigh wave ZH ratio kernel based on the adjoint-wavefield method and perform two synthetic tests using the new kernel. The 2-D ZH ratio kernel is consistent with the traditional 1-D sensitivity kernel but has an asymmetric pattern with a preferred orientation toward the source. The predominant effect caused by heterogeneity can clearly be seen from kernels calculated from models with 2-D heterogeneities, which confirms the necessity of using the new 2-D kernel in some complex regions. Inversion tests using synthetic data show that the 2-D ZH ratio kernel has the potential to resolve small anomalies as well as complex lateral structures.

Key words: Rayleigh wave, ZH ratio, adjoint-wavefield method, 2-D sensitivity kernel, tomography

Allmark, C., Curtis, A., Galetti, E., and de Ridder, S. (2018). Seismic attenuation from ambient noise across the north sea Ekofisk permanent array. J. Geophys. Res. Solid Earth, 123(10), 8691–8710. https://doi.org/10.1029/2017jb015419

Bao, X. Y., and Shen, Y. (2018). Full-waveform sensitivity kernels of component-differential traveltimes and ZH amplitude ratios for velocity and density tomography. J. Geophys. Res. Solid Earth, 123(6), 4829–4840. https://doi.org/10.1029/2017jb015421

Berbellini, A., Morelli, A., and Ferreira, A. M. G. (2017). Crustal structure of northern Italy from the ellipticity of Rayleigh waves. Phys. Earth Planet. Interiors, 265, 1–14. https://doi.org/10.1016/j.pepi.2016.12.005

Boore, D. M., and Toksöz, M. N. (1969). Rayleigh wave particle motion and crustal structure. Bull. Seismol. Soc. Am., 59(1), 331–346.

Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth's crust. Bull. Seismol. Soc. Am., 95(6), 2081–2092. https://doi.org/10.1785/0120050077

Chen, P., Jordan, T. H., and Zhao, L. (2007). Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods. Geophys. J. Int., 170(1), 175–181. https://doi.org/10.1111/j.1365-246x.2007.03429.x

Chong, J. J., Ni, S. D., and Zhao, L. (2015). Joint inversion of crustal structure with the Rayleigh wave phase velocity dispersion and the ZH ratio. Pure Appl. Geophys., 172(10), 2585–2600. https://doi.org/10.1007/s00024-014-0902-z

Chong, J. J., Ni, S. D., Chu, R. S., and Somerville, P. (2016). Joint inversion of body-wave receiver function and Rayleigh-wave ellipticity. Bull. Seismol. Soc. Am., 106(2), 537–551. https://doi.org/10.1785/0120150075

Dahlen, F. A., and Baig, A. M. (2002). Fréchet kernels for body-wave amplitudes. Geophys. J. Int., 150(2), 440–466. https://doi.org/10.1046/j.1365-246x.2002.01718.x

Ferreira, A. M., and Woodhouse, J. H. (2007a). Observations of long period Rayleigh wave ellipticity. Geophys. J. Int., 169(1), 161–169. https://doi.org/10.1111/j.1365-246x.2006.03276.x

Ferreira, A. M., and Woodhouse, J. H. (2007b). Source, path and receiver effects on seismic surface waves. Geophys. J. Int., 168(1), 109–132. https://doi.org/10.1111/j.1365-246x.2006.03092.x

Forbriger, T., Groos, L., and Schäfer, M. (2014). Line-source simulation for shallow-seismic data — Part 1: Theoretical background. Geophys. J. Int., 198(3), 1387–1404. https://doi.org/10.1093/gji/ggu199

Komatitsch, D., and Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation — I. Validation. Geophys. J. Int., 149(2), 390–412. https://doi.org/10.1046/j.1365-246x.2002.01653.x

Komatitsch, D., and Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation — II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys. J. Int., 150(1), 303–318. https://doi.org/10.1046/j.1365-246x.2002.01716.x

Lin, F. C., Schmandt, B., and Tsai, V. C. (2012). Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust. Geophys. Res. Lett., 39(12), L12303. https://doi.org/10.1029/2012gl052196

Lin, F. C., Tsai, V. C., and Schmandt, B. (2014). 3-D crustal structure of the western United States: application of Rayleigh-wave ellipticity extracted from noise cross-correlations. Geophys. J. Int., 198(2), 656–670. https://doi.org/10.1093/gji/ggu160

Liu, Q. Y., and Tromp, J. (2006). Finite-frequency kernels based on adjoint methods. Bull. Seismol. Soc. Am., 96(6), 2383–2397. https://doi.org/10.1785/0120060041

Liu, Q. Y., and Gu, Y. J. (2012). Seismic imaging: from classical to adjoint tomography. Tectonophysics, 566–567, 31–66. https://doi.org/10.1016/j.tecto.2012.07.006

Maupin, V. (2017). 3-D sensitivity kernels of the Rayleigh wave ellipticity. Geophys. J. Int., 211(1), 107–119. https://doi.org/10.1093/gji/ggx294

Shapiro, N. M., and Ritzwoller, M. H. (2002). Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int., 151(1), 88–105. https://doi.org/10.1046/j.1365-246x.2002.01742.x

Shen, Y., Zhang, Z. G., and Zhao, L. (2008). Component-dependent Fréchet sensitivity kernels and utility of three-component seismic records. Bull. Seismol. Soc. Am., 98(5), 2517–2525. https://doi.org/10.1785/0120070283

Tanimoto, T., and Alvizuri, C. (2006). Inversion of the HZ ratio of microseisms for S-wave velocity in the crust. Geophys. J. Int., 165(1), 323–335. https://doi.org/10.1111/j.1365-246x.2006.02905.x

Tanimoto, T., and Rivera, L. (2008). The ZH ratio method for long-period seismic data: sensitivity kernels and observational techniques. Geophys. J. Int., 172(1), 187–198. https://doi.org/10.1111/j.1365-246x.2007.03609.x

Tanimoto, T., and Tsuboi, S. (2009). Variational principle for Rayleigh wave ellipticity. Geophys. J. Int., 179(3), 1658–1668. https://doi.org/10.1111/j.1365-246x.2009.04360.x

Tanimoto, T., Yano, T., and Hakamata, T. (2013). An approach to improve Rayleigh-wave ellipticity estimates from seismic noise: application to the Los Angeles Basin. Geophys. J. Int., 193(1), 407–420. https://doi.org/10.1093/gji/ggs123

Tape, C., Liu, Q. Y., and Tromp, J. (2007). Finite-frequency tomography using adjoint methods—Methodology and examples using membrane surface waves. Geophys. J. Int., 168(3), 1105–1129. https://doi.org/10.1111/j.1365-246x.2006.03191.x

Tromp, J., Tape, C., and Liu, Q. Y. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int., 160(1), 195–216. https://doi.org/10.1111/j.1365-246x.2004.02453.x

Workman, E., Lin, F. C., and Koper, K. D. (2016). Determination of Rayleigh wave ellipticity across the Earthscope Transportable Array using single-station and array-based processing of ambient seismic noise. Geophys. J. Int., 208(1), 234–245. https://doi.org/10.1093/gji/ggw381

Yang, Y., Yao, H. J., Wu, H. X., Zhang, P., and Wang, M. M. (2020). A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics. Geophys. J. Int., 220(2), 1379–1393. https://doi.org/10.1093/gji/ggz514

Yano, T., Tanimoto, T., and Rivera, L. (2009). The ZH ratio method for long-period seismic data: inversion for S-wave velocity structure. Geophys. J. Int., 179(1), 413–424. https://doi.org/10.1111/j.1365-246x.2009.04293.x

Yuan, Y., Yao, H. J., and Qin Y. (2016). Joint inversion of Rayleigh wave vertical-horizontal amplitude ratios and dispersion based on the Neighborhood Algorithm and its application. Chinese J. Geophys. (in Chinese) , 59(3), 959–971. https://doi.org/10.6038/cjg20160318

Yuan, Y. O., Simons, F. J., and Tromp, J. (2016). Double-difference adjoint seismic tomography. Geophys. J. Int., 206(3), 1599–1618. https://doi.org/10.1093/gji/ggw233

Zhang, C., Yao, H. J., Liu, Q. Y., Zhang, P., Yuan, Y. O., Feng, J. K., and Fang, L. H. (2018). Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China craton. J. Geophys. Res. Solid Earth, 123(1), 368–383. https://doi.org/10.1002/2017jb015019

Zhao, L., Jordan, T. H., Olsen, K. B., and Chen, P. (2005). Fréchet kernels for imaging regional Earth structure based on three-dimensional reference models. Bull. Seismol. Soc. Am., 95(6), 2066–2080. https://doi.org/10.1785/0120050081

Zhang, Z. G., and Shen, Y. (2008). Cross-dependence of finite-frequency compressional waveforms to shear seismic wave speeds. Geophys. J. Int., 174(3), 941–948. https://doi.org/10.1111/j.1365-246x.2008.03840.x

Zhou, Y., Dahlen, F. A., and Nolet, G. (2004). Three-dimensional sensitivity kernels for surface wave observables. Geophys. J. Int., 158(1), 142–168. https://doi.org/10.1111/j.1365-246x.2004.02324.x

[1]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[2]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[3]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[4]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[5]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[6]

Bin Liu, 2022: mFAST: A MATLAB toolbox for ocean bottom seismometer refraction first-arrival traveltime tomography, Earth and Planetary Physics, 6, 487-494. doi: 10.26464/epp2022044

[7]

XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010

[8]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[9]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[10]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[11]

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

[12]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[13]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[14]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[15]

Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052

[16]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[17]

Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029

[18]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[19]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[20]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples

Ting Lei, HuaJian Yao, Chao Zhang