Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, Q.-Y., and Yao, H. J. (2020). Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective. Earth Planet. Phys., 4(5), 532–542doi: 10.26464/epp2020048

2020, 4(5): 532-542. doi: 10.26464/epp2020048

SOLID EARTH: SEISMOLOGY

Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective

1. 

University Grenoble Alpes, CNRS, ISTerre, Grenoble, France

2. 

Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

4. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng Anhui 233500, China

Corresponding author: Qing-Yu Wang, qingyu.wang@univ-grenoble-alpes.fr

Received Date: 2020-05-11
Web Publishing Date: 2020-09-25

Over the past two decades, the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures. In addition, ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions. Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation. In this article, we outline some state-of-the-art techniques for noise-based monitoring, including moving-window cross-spectral analysis, the stretching method, dynamic time wrapping, wavelet cross-spectrum analysis, and a combination of these measurement methods, with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method. We briefly state the principles underlying the different methods and their pros and cons. By elaborating on some typical noise-based monitoring applications, we show how this technique can be widely applied in different scenarios and adapted to multiples scales. We list classical applications, such as following earthquake-related co- and postseismic velocity changes, forecasting volcanic eruptions, and tracking external environmental forcing-generated transient changes. By monitoring cases having different targets at different scales, we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs, landslides, and so forth. Finally, we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions. To improve the temporal and spatial resolution of passive-source noise monitoring, we propose integrating different methods and seismic sources. Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes.

Key words: ambient noise correlation, noise-based monitoring, seismic wave velocity changes, the evolution of physical properties of the crust

Acarel, D., Bulut, F., Bohnhoff, M., and Kartal, R. (2014). Coseismic velocity change associated with the 2011 Van earthquake (M 7.1): Crustal response to a major event. Geophys. Res. Lett., 41(13), 4519–4526. https://doi.org/10.1002/2014GL060624

Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst., 35(3), 415–456.

Birch, F. (1961). The velocity of compressional waves in rocks to 10 kilobars: 2. J. Geophys. Res., 66(7), 2199–2224. https://doi.org/10.1029/JZ066i007p02199

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N. M., Nadeau, R. M., and Larose, E. (2008a). Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science, 321(5895), 1478–1481. https://doi.org/10.1126/science.1160943

Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., and Nercessian, A. (2008b). Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci., 1(2), 126–130. https://doi.org/10.1038/ngeo104

Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., Emoto, K., and Miyake, H. (2014). Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science, 345(6192), 80–82. https://doi.org/10.1126/science.1254073

Brenguier, F., Rivet, D., Obermann, A., Nakata, N., Boué, P., Lecocq, T., Campillo, M., and Shapiro, N. (2016). 4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives. J. Volcanol. Geoth. Res., 321, 182–195. https://doi.org/10.1016/j.jvolgeores.2016.04.036

Brenguier, F., Courbis, R., Mordret, A., Campman, X., Boué, P., Chmiel, M., Takano, T., Lecocq, T., Van der Veen, W., .. Hollis, D. (2020). Noise-based ballistic wave passive seismic monitoring. Part 1: Body waves. Geophys. J. Int., 221(1), 683–691. https://doi.org/10.1093/gji/ggz440

Bürgmann, R., and Dresen, G. (2008). Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36, 531–567. https://doi.org/10.1146/annurev.earth.36.031207.124326

Campillo, M., and Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547–549. https://doi.org/10.1126/science.1078551

Campillo, M. (2006). Phase and correlation in ‘random’ seismic fields and the reconstruction of the Green function. Pure Appl. Geophys., 163(2), 475–502. https://doi.org/10.1007/s00024-005-0032-8

Campillo, M., Sato, H., Shapiro, N. M., and van der Hilst, R. D. (2011). New developments on imaging and monitoring with seismic noise. C. R. Geosci., 343(8-9), 487–495. https://doi.org/10.1016/j.crte.2011.07.007

Chen, J. H., Froment, B., Liu, Q. Y., and Campillo, M. (2010). Distribution of seismic wave speed changes associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake. Geophys. Res. Lett., 37(18), L18302. https://doi.org/10.1029/2010GL044582

Cheng, X., Niu, F. L., and Wang, B. S. (2010). Coseismic velocity change in the rupture zone of the 2008 Mw 7.9 Wenchuan earthquake observed from ambient seismic noise. Bull. Seismol. Soc. Am., 100(5B), 2539–2550. https://doi.org/10.1785/0120090329

Claerbout, J. F. (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33(2), 264–269. https://doi.org/10.1190/1.1439927

Clarke, D., Zaccarelli, L., Shapiro, N. M., and Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophys. J. Int., 186(2), 867–882. https://doi.org/10.1111/j.1365-246X.2011.05074.x

Colombi, A., Chaput, J., Brenguier, F., Hillers, G., Roux, P., and Campillo, M. (2014). On the temporal stability of the coda of ambient noise correlations. C. R. Geosci., 346(11-12), 307–316. https://doi.org/10.1016/j.crte.2014.10.002

Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., and White, R. S. (2017). Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Sci. Adv., 3(6), e1700219. https://doi.org/10.1126/sciadv.1700219

Donaldson, C., Winder, T., Caudron, C., and White, R. S. (2019). Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland’s Northern Volcanic Zone. Sci. Adv., 5(11), eaax6642. https://doi.org/10.1126/sciadv.aax6642

Durand, S., Montagner, J. P., Roux, P., Brenguier, F., Nadeau, R. M., and Ricard, Y. (2011). Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys. Res. Lett., 38(13), L13303. https://doi.org/10.1029/2011GL047875

Field, E. H., Zeng, Y. H., Johnson, P. A., and Beresnev, I. A. (1998). Nonlinear sediment response during the 1994 Northridge earthquake: Observations and finite source simulations. J. Geophys. Res.: Solid Earth, 103(B11), 26869–26883. https://doi.org/10.1029/98jb02235

Froment, B., Campillo, M., Roux, P., Gouédard, P., Verdel, A., and Weaver, R. L. (2010). Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics, 75(5), SA85–SA93. https://doi.org/10.1190/1.3483102

Froment, B., Campillo, M., Chen, J. H., and Liu, Q. Y. (2013). Deformation at depth associated with the 12 May 2008 Mw 7.9 Wenchuan earthquake from seismic ambient noise monitoring. Geophys. Res. Lett., 40(1), 78–82. https://doi.org/10.1029/2012GL053995

Hadziioannou, C., Larose, E., Coutant, O., Roux, P., and Campillo, M. (2009). Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments. J. Acoust. Soc. Am., 125(6), 3688–3695. https://doi.org/10.1121/1.3125345

Hillers, G., Campillo, M., and Ma, K. F. (2014). Seismic velocity variations at TCDP are controlled by MJO driven precipitation pattern and high fluid discharge properties. Earth Planet. Sci. Lett., 391, 121–127. https://doi.org/10.1016/j.jpgl.2014.01.040

Hillers, G., Ben-Zion, Y., Campillo, M., and Zigone, D. (2015a). Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophys. J. Int., 202(2), 920–932. https://doi.org/10.1093/gji/ggv151

Hillers, G., Retailleau, L., Campillo, M., Inbal, A., Ampuero, J. P., and Nishimura, T. (2015b). In situ observations of velocity changes in response to tidal deformation from analysis of the high-frequency ambient wavefield. J. Geophys. Res.: Solid Earth, 120(1), 210–225. https://doi.org/10.1002/2014JB011318

Hillers, G., Husen, S., Obermann, A., Planès, T., Larose, E., and Campillo, M. (2015c). Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation. Geophysics, 80(4), KS51–KS68. https://doi.org/10.1190/geo2014-0455.1

Hirose, T., Nakahara, H., and Nishimura, T. (2017). Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: Application to Sakurajima volcano, Japan. Earth, Planets and Space, 69, 42. https://doi.org/10.1186/s40623-017-0613-7

Hirose, T., Nakahara, H., and Nishimura, T. (2019). A passive estimation method of scattering and intrinsic absorption parameters from envelopes of seismic ambient noise cross-correlation functions. Geophys. Res. Lett., 46(7), 3634–3642. https://doi.org/10.1029/2018GL080553

Hong, T. K., Lee, J., Chi, D., and Park, S. (2017). Seismic velocity changes in the backarc continental crust after the 2011 Mw 9.0 Tohoku-Oki megathrust earthquake. Geophys. Res. Lett., 44(21), 10997–11003. https://doi.org/10.1002/2017GL075447

Hotovec-Ellis, A. J., Gomberg, J., Vidale, J. E., and Creager, K. C. (2014). A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry. J. Geophys. Res.: Solid Earth, 119(3), 2199–2214. https://doi.org/10.1002/2013JB010742

Ikuta, R., Yamaoka, K., Miyakawa, K., Kunitomo, T., and Kumazawa, M. (2002). Continuous monitoring of propagation velocity of seismic wave using ACROSS. Geophys. Res. Lett., 29(13), 5–1. https://doi.org/10.1029/2001GL013974

James, S. R., Knox, H. A., Abbott, R. E., and Screaton, E. J. (2017). Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophys. Res. Lett., 44(9), 4018–4026. https://doi.org/10.1002/2016GL072468

Johnson, P., and Sutin, A. (2005). Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am., 117(1), 124–130. https://doi.org/10.1121/1.1823351

Karageorgi, E., Clymer, R., and McEvilly, T. V. (1992). Seismological studies at Parkfield. II. Search for temporal variations in wave propagation using vibroseis. Bull. Seismol. Soc. Am., 82(3), 1388–1415.

Larose, E., Derode, A., Clorennec, D., Margerin, L., and Campillo, M. (2005a). Passive retrieval of Rayleigh waves in disordered elastic media. Phys. Rev. E, 72(4), 046607. https://doi.org/10.1103/PhysRevE.72.046607

Larose, E., Khan, A., Nakamura, Y., and Campillo, M. (2005b). Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett., 32(16), L16201. https://doi.org/10.1029/2005GL023518

Larose, E., Roux, P., Campillo, M., and Derode, A. (2008). Fluctuations of correlations and Green’s function reconstruction: Role of scattering. J. Appl. Phys., 103(11), 114907. https://doi.org/10.1063/1.2939267

Lecocq, T., Longuevergne, L., Pedersen, H. A., Brenguier, F., and Stammler, K. (2017). Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. Sci. Rep., 7, 14241. https://doi.org/10.1038/s41598-017-14468-9

Liu, Z. K., Huang, J. L., Peng, Z. G., and Su, J. R. (2014). Seismic velocity changes in the epicentral region of the 2008 Wenchuan earthquake measured from three-component ambient noise correlation techniques. Geophys. Res. Lett., 41(1), 37–42. https://doi.org/10.1002/2013GL058682

Liu, Z. K., Huang, J. L., He, P., and Qi, J. J. (2018). Ambient noise monitoring of seismic velocity around the Longmenshan fault zone from 10 years of continuous observation. J. Geophys. Res.: Solid Earth, 123(10), 8979–8994. https://doi.org/10.1029/2018JB015986

Liu, Z. Q., Liang, C. T., Zhu, Z. J., Wang, L., Jiang, N. B., Wang, C. L., and Wu, Z. B. (2019). The complex velocity variation induced by the precipitation and the 2018 eruption of the Kilauea Volcano in Hawaii revealed by ambient noise. Seismol. Res. Lett., 90(6), 2154–2164. https://doi.org/10.1785/0220190053

Lobkis, O. I., and Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am., 110(6), 3011–3017. https://doi.org/10.1121/1.1417528

Lobkis, O. I., and Weaver, R. L. (2003). Coda-wave interferometry in finite solids: Recovery of P- to S conversion rates in an elastodynamic billiard. Physical Review Letters, 90(25(Pt 1)), 254302. https://doi.org/10.1103/PhysRevLett.90.254302

Lyakhovsky, V., Reches, Z., Weinberger, R., and Scott, T. E. (1997). Non-linear elastic behaviour of damaged rocks. Geophys. J. Int., 130(1), 157–166. https://doi.org/10.1111/j.1365-246X.1997.tb00995.x

Lyakhovsky, V., Hamiel, Y., Ampuero, J. P., and Ben-Zion, Y. (2009). Non-linear damage rheology and wave resonance in rocks. Geophys. J. Int., 178(2), 910–920. https://doi.org/10.1111/j.1365-246X.2009.04205.x

Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., and Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res.: Earth Surf., 117(F1), F01030. https://doi.org/10.1029/2011JF002159

Mao, S. J., Campillo, M., van der Hilst, R. D., Brenguier, F., Stehly, L., and Hillers, G. (2019a). High temporal resolution monitoring of small variations in crustal strain by dense seismic arrays. Geophys. Res. Lett., 46(1), 128–137. https://doi.org/10.1029/2018GL079944

Mao, S. J., Mordret, A., Campillo, M., Fang, H. J., and van der Hilst, R. D. (2020). On the measurement of seismic traveltime changes in the time-frequency domain with wavelet cross-spectrum analysis. Geophys. J. Int., 221(1), 550–568. https://doi.org/10.1093/gji/ggz495

Margerin, L., Planès, T., Mayor, J., and Calvet, M. (2016). Sensitivity kernels for coda-wave interferometry and scattering tomography: Theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophys. J. Int., 204(1), 650–666. https://doi.org/10.1093/gji/ggv470

Mayor, J., Margerin, L., and Calvet, M. (2014). Sensitivity of coda waves to spatial variations of absorption and scattering: Radiative transfer theory and 2-D examples. Geophys. J. Int., 197(2), 1117–1137. https://doi.org/10.1093/gji/ggu046

Meier, U., Shapiro, N. M., and Brenguier, F. (2010). Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophys. J. Int., 181(2), 985–996. https://doi.org/10.1111/j.1365-246X.2010.04550.x

Mikesell, T. D., Malcolm, A. E., Yang, D., and Haney, M. M. (2015). A comparison of methods to estimate seismic phase delays: Numerical examples for coda wave interferometry. Geophys. J. Int., 202(1), 347–360. https://doi.org/10.1093/gji/ggv138

Mordret, A., Jolly, A. D., Duputel, Z., and Fournier, N. (2010). Monitoring of phreatic eruptions using interferometry on retrieved cross-correlation function from ambient seismic noise: Results from Mt. Ruapehu, New Zealand. J. Volcan. Geoth. Res., 191(1-2), 46–59. https://doi.org/10.1016/j.jvolgeores.2010.01.010

Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., and Prieto, G. A. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Sci. Adv., 2(5), e1501538. https://doi.org/10.1126/sciadv.1501538

Mordret, A., Courbis, R., Brenguier, F., Chmiel, M., Garambois, S., Mao, S. J., Boué, P., Campman, X., Lecocq, T., .. Hollis, D. (2020). Noise-based ballistic wave passive seismic monitoring—Part 2: Surface waves. Geophys. J. Int., 221(1), 692–705. https://doi.org/10.1093/gji/ggaa016

Nakahara, H., and Emoto, K. (2017). Deriving sensitivity kernels of coda-wave travel times to velocity changes based on the three-dimensional single isotropic scattering model. Pure Appl. Geophys., 174(1), 327–337. https://doi.org/10.1007/s00024-016-1358-0

Nakahara, H., Wang, Q., Hobiger, M., and Hirose, T. (2020). Statistical characteristics of seismic velocity changes measured by seismic interferometry. (In review)222

Niu, F. L., Silver, P. G., Daley, T. M., Cheng, X., and Majer, E. L. (2008). Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, 454(7201), 204–208. https://doi.org/10.1038/nature07111

Nur, A., and Simmons, G. (1969). The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett., 7(2), 183–193. https://doi.org/10.1016/0012-821X(69)90035-1

Obermann, A., Planès, T., Larose, E., and Campillo, M. (2013a). Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res.: Solid Earth, 118(12), 6285–6294. https://doi.org/10.1002/2013JB010399

Obermann, A., Planès, T., Larose, E., Sens-Schönfelder, C., and Campillo, M. (2013b). Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophys. J. Int., 194(1), 372–382. https://doi.org/10.1093/gji/ggt043

Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T., Valette, B., Chen, J. H., and Liu, Q. Y. (2014). Seismic noise correlations to image structural and mechanical changes associated with the M w 7.9 2008 Wenchuan earthquake. J. Geophys. Res.: Solid Earth, 119(4), 3155–3168. https://doi.org/10.1002/2013JB010932

Obermann, A., Kraft, T., Larose, E., and Wiemer, S. (2015). Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). J. Geophys. Res.: Solid Earth, 120(6), 4301–4316. https://doi.org/10.1002/2014JB011817

Obermann, A., Planès, T., Larose, E., and Campillo, M. (2019). 4-D imaging of subsurface changes with coda waves: numerical studies of 3-D combined sensitivity kernels and applications to the Mw 7.9, 2008 Wenchuan earthquake. Pure Appl. Geophys., 176(3), 1243–1254. https://doi.org/10.1007/s00024-018-2014-7

O’Connell, R. J., and Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79(35), 5412–5426. https://doi.org/10.1029/JB079i035p05412

Olivier, G., Brenguier, F., Campillo, M., Roux, P., Shapiro, N. M., and Lynch, R. (2015). Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine. Geophys. Res. Lett., 42(21), 9261–9269. https://doi.org/10.1002/2015GL065975

Olivier, G., Brenguier, F., De Wit, T., and Lynch, R. (2017). Monitoring the stability of tailings dam walls with ambient seismic noise. Leading Edge, 36(4), 350a1–350a6. https://doi.org/10.1190/tle36040350a1.1

Pacheco, C., and Snieder, R. (2005). Time-lapse travel time change of multiply scattered acoustic waves. J. Acoust. Soc. Am., 118(3), 1300–1310. https://doi.org/10.1121/1.2000827

Pei, S. P., Niu, F. L., Ben-Zion, Y., Sun, Q., Liu, Y. B., Xue, X. T., Su, J. R., and Shao, Z. G. (2019). Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nat. Geosci., 12(5), 387–392. https://doi.org/10.1038/s41561-019-0347-1

Planès, T., Larose, E., Margerin, L., Rossetto, V., and Sens-Schönfelder, C. (2014). Decorrelation and phase-shift of coda waves induced by local changes: Multiple scattering approach and numerical validation. Waves Random Complex Media, 24(2), 99–125. https://doi.org/10.1080/17455030.2014.880821

Planès, T., Mooney, M. A., Rittgers, J. B. R., Parekh, M. L., Behm, M., and Snieder, R. (2016). Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise. Géotechnique, 66(4), 301–312. https://doi.org/10.1680/jgeot.14.P.268

Poli, P., Marguin, V., Wang, Q. Y., D’agostino, N., and Johnson, P. (2020). Seasonal and co-seismic velocity variation in the region of L’Aquila from single station measurements and implications for crustal rheology. J. Geophys. Res.: Solid Earth, 125, e2019JB019316. https://doi.org/10.1029/2019JB019316

Poupinet, G., Ellsworth, W. L., and Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res.: Solid Earth, 89(B7), 5719–5731. https://doi.org/10.1029/JB089iB07p05719

Reasenberg, P., and Aki, K. (1974). A precise, continuous measurement of seismic velocity for monitoring in situ stress. J. Geophys. Res., 79(2), 399–406. https://doi.org/10.1029/JB079i002p00399

Richter, T., Sens-Schönfelder, C., Kind, R., and Asch, G. (2014). Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. J. Geophys. Res.: Solid Earth, 119(6), 4747–4765. https://doi.org/10.1002/2013JB010695

Sawazaki, K., Sato, H., Nakahara, H., and Nishimura, T. (2009). Time-lapse changes of seismic velocity in the shallow ground caused by strong ground motion shock of the 2000 Western-Tottori earthquake, Japan, as revealed from coda deconvolution analysis. Bull. Seismol. Soc. Am., 99(1), 352–366. https://doi.org/10.1785/0120080058

Sawazaki, K., Kimura, H., Shiomi, K., Uchida, N., Takagi, R., and Snieder, R. (2015). Depth-dependence of seismic velocity change associated with the 2011 Tohoku earthquake, Japan, revealed from repeating earthquake analysis and finite-difference wave propagation simulation. Geophys. J. Int., 201(2), 741–763. https://doi.org/10.1093/gji/ggv014

Schimmel, M., Stutzmann, E., and Ventosa, S. (2018). Low-frequency ambient noise autocorrelations: Waveforms and normal modes. Seismol. Res. Lett., 89(4), 1488–1496. https://doi.org/10.1785/0220180027

Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am., 68(5), 1516–1521. https://doi.org/10.1121/1.385077

Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., and Collettini, C. (2016). Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nat. Geosci., 9(9), 695–700. https://doi.org/10.1038/ngeo2775

Sens-Schönfelder, C., and Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett., 33(21), L21302. https://doi.org/10.1029/2006GL027797

Sens-Schönfelder, C., and Larose, E. (2010). Lunar noise correlation, imaging and monitoring. Earthq. Sci., 23(5), 519–530. https://doi.org/10.1007/s11589-010-0750-6

Sens-Schönfelder, C., Pomponi, E., and Peltier, A. (2014). Dynamics of Piton de la Fournaise volcano observed by passive image interferometry with multiple references. J. Volcan. Geoth. Res., 276, 32–45. https://doi.org/10.1016/j.jvolgeores.2014.02.012

Sens-Schönfelder, C., Snieder, R., and Li, X. (2019). A model for nonlinear elasticity in rocks based on friction of internal interfaces and contact aging. Geophys. J. Int., 216(1), 319–331. https://doi.org/10.1093/gji/ggy414

Shapiro, N. M., and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31(7), L07614. https://doi.org/10.1029/2004GL019491

Silver, P. G., Daley, T. M., Niu, F. L., and Majer, E. L. (2007). Active source monitoring of cross-well seismic travel time for stress-induced changes. Bull. Seismol. Soc. Am., 97(1B), 281–293. https://doi.org/10.1785/0120060120

Sleep, N. H. (2015). Shallow S-wave well logs as an indicator of past strong shaking from earthquakes on the Newport–Inglewood fault. Bull. Seismol. Soc. Am., 105(5), 2696–2703. https://doi.org/10.1785/0120150026

Snieder, R., Grêt, A., Douma, H., and Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253–2255. https://doi.org/10.1126/science.1070015

Takano, T., Nishimura, T., Nakahara, H., Ohta, Y., and Tanaka, S. (2014). Seismic velocity changes caused by the Earth tide: Ambient noise correlation analyses of small-array data. Geophys. Res. Lett., 41(17), 6131–6136. https://doi.org/10.1002/2014GL060690

Takano, T., Brenguier, F., Campillo, M., Peltier, A., and Nishimura, T. (2020). Noise-based passive ballistic wave seismic monitoring on an active volcano. Geophys. J. Int., 220(1), 501–507. https://doi.org/10.1093/gji/ggz466

Tanimoto, T., Eitzel, M., and Yano, T. (2008). The noise cross-correlation approach for Apollo 17 LSPE data: Diurnal change in seismic parameters in shallow lunar crust. J. Geophys. Res.: Planets, 113(E8), E08011. https://doi.org/10.1029/2007JE003016

Taylor, G., and Hillers, G. (2020). Estimating temporal changes in seismic velocity using a Markov chain Monte Carlo approach. Geophys. J. Int., 220(3), 1791–1803. https://doi.org/10.1093/gji/ggz535

Tsai, V. C. (2011). A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J. Geophys. Res.: Solid Earth, 116(B4), B04404. https://doi.org/10.1029/2010JB008156

Wang, B. S., Yang, W., Wang, W. T., Yang, J., Li, X. B., and Ye, B. (2020). Diurnal and semidiurnal P- and S-wave velocity changes measured using an airgun source. J. Geophys. Res.: Solid Earth, 125(1), e2019JB018218. https://doi.org/10.1029/2019JB018218

Wang, Q. Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T., and Aoki, Y. (2017). Seasonal crustal seismic velocity changes throughout Japan. J. Geophys. Res.: Solid Earth, 122(10), 7987–8002. https://doi.org/10.1002/2017JB014307

Wang, Q. Y., Campillo, M., Brenguier, F., Lecointre, A., Takeda, T., and Hashima, A. (2019). Evidence of changes of seismic properties in the entire crust beneath Japan after the M w 9.0, 2011 Tohoku-oki Earthquake. J. Geophys. Res.: Solid Earth, 124(8), 8924–8941. https://doi.org/10.1029/2019JB017803

Weaver, R. L., Hadziioannou, C., Larose, E., and Campillo, M. (2011). On the precision of noise correlation interferometry. Geophys. J. Int., 185(3), 1384–1392. https://doi.org/10.1111/j.1365-246X.2011.05015.x

Wegler, U., and Sens-Schönfelder, C. (2007). Fault zone monitoring with passive image interferometry. Geophys. J. Int., 168(3), 1029–1033. https://doi.org/10.1111/j.1365-246X.2006.03284.x

Xu, Z. J., and Song, X. D. (2009). Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation. Proc. Natl. Acad. Sci. USA, 106(34), 14207–14212. https://doi.org/10.1073/pnas.0901164106

Yamamura, K., Sano, O., Utada, H., Takei, Y., Nakao, S., and Fukao, Y. (2003). Long-term observation of in situ seismic velocity and attenuation. J. Geophys. Res., 108(B6), 2317. https://doi.org/10.1029/2002JB002005

Yang, W., Wang, B. S., Yuan, S. Y., and Ge, H. K. (2018). Temporal variation of seismic-wave velocity associated with groundwater level observed by a downhole airgun near the Xiaojiang fault zone. Seismol. Res. Lett., 89(3), 1014–1022. https://doi.org/10.1785/0220170282

Yao, H. J., and van der Hilst, R. D. (2009). Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys. J. Int., 179(2), 1113–1132. https://doi.org/10.1111/j.1365-246X.2009.04329.x

Zhan, Z. W., Tsai, V. C., and Clayton, R. W. (2013). Spurious velocity changes caused by temporal variations in ambient noise frequency content. Geophysi. J. Int., 194(3), 1574–1581. https://doi.org/10.1093/gji/ggt170

Zhang, Y. X., Planès, T., Larose, E., Obermann, A., Rospars, C., and Moreau, G. (2016). Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam. J. Acoust. Soc. Am., 139(4), 1691–1701. https://doi.org/10.1121/1.4945097

Zhao, P. P., Chen, J. H., Campillo, M., Liu, Q. Y., Li, Y., Li, S. C., Guo, B., Wang, J., and Qi S. H. (2012). Crustal velocity changes associated with the Wenchuan M8.0 earthquake by auto-correlation function analysis of seismic ambient noise. Chinese J. Geophys. (in Chinese) , 55(1), 137–145. https://doi.org/10.6038/j.issn.0001-5733.2012.01.013

[1]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[2]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[3]

Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031

[4]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[5]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[6]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[7]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[8]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[9]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[10]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[11]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[12]

Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

[13]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[14]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[15]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[16]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[17]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[18]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[19]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[20]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective

Qing-Yu Wang, HuaJian Yao