Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Xue, X. H., Sun, D. S., Xia, H. Y., and Dou, X. K. (2020). Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources. Earth Planet. Phys., 4(5), 461–471doi: 10.26464/epp2020039

2020, 4(5): 461-471. doi: 10.26464/epp2020039


Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources


Chinese Academy of Sciences Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei 230026, China


Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China


Anhui Mengcheng Geophysics National Observation and Research Station University of Science and Technology of China, Hefei 230026, China


Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China


Hefei National Laboratory for the Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

Corresponding author: XiangHui Xue, Dou,

Received Date: 2020-03-27
Web Publishing Date: 2020-09-25

In this paper, we use wind observations by a Doppler wind LiDAR near Delingha (37.4°N, 97.4°E), Qinghai, Northwestern China to study the characteristics of inertial gravity waves in the stratosphere. We focus on 10–12 December 2013, a particularly interesting case study. Most of the time, the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km. However, for parts of the observational period in this case study, a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes. In the middle and upper stratosphere (~30–50 km), the waves propagated downward, especially during a period of stronger winds, and to the northwest–southeast. In the lower stratosphere and upper troposphere (~10–20 km), however, waves with upward propagation and northeast–southwest orientation were dominant. By taking into account reanalysis data and satellite observations, we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period. The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams.

Key words: gravity waves, lidar, wind observations

AIRS Science Team, and Chahine, M. (2007). AIRS/Aqua L1B Infrared (IR) geolocated and calibrated radiances V005, version 005, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). available at last access: 31 December 2015.222

Alexander, S. P., Klekociuk, A. R., and Murphy, D. J. (2011). Rayleigh LiDAR observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E). J. Geophys. Res.: Atmos., 116(D13), D13109.

Aumann, H. H., Gregorich, D., and De Souza-Machado, S. M. (2006). AIRS observations of deep convective clouds. In Proceedings Volume 6301, Atmospheric and Environmental Remote Sensing Data Processing and Utilization II: Perspective on Calibration/Validation Initiatives and Strategies. San Diego: SPIE.

Baumgarten, G., Fiedler, J., Hildebrand, J., and Lübken, F. J. (2015). Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature LiDAR. Geophys. Res. Lett., 42(24), 10929–10936.

Chen, C., Chu, X. Z., Zhao, J., Roberts, B. R., Yu, Z. B., Fong, W., Lu, X., and Smith, J. A. (2016). Lidar observations of persistent gravity waves with periods of 3–10 h in the Antarctic middle and upper atmosphere at McMurdo (77.83°S, 166.67°E). J. Geophys. Res. Space Phys., 121(2), 1483–1502.

Dou, X. K., Han, Y. L., Sun, D. S., Xia, H. Y., Shu, Z. F., Zhao, R. C., Shangguan, M. J., and Guo, J. (2014). Mobile Rayleigh Doppler LiDAR for wind and temperature measurements in the stratosphere and lower mesosphere. Opt. Express, 22(S5), A1203–A1221.

Fritts, D. C., and Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003.

Gavrilov, N. M., Fukao, S., Nakamura, T., Tsuda, T., Yamanaka, M. D., and Yamamoto, M. (1996). Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere: 1. Method and general characteristics. J. Geophys. Res. Atmos., 101(D23), 29511–29521.

Guest, F. M., Reeder, M. J., Marks, C. J., and Karoly, D. J. (2000). Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. J. Atmos. Sci., 57(5), 737–752.<0737:IGWOIT>2.0.CO;2

Hersbach, H., and Dee, D. (2016). ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7. Available online at

Hertzog, A., Souprayen, C., and Hauchecorne, A. (2001). Measurements of gravity wave activity in the lower stratosphere by Doppler LiDAR. J. Geophys. Res. Atmos., 106(D8), 7879–7890.

Hu, X., Liu, A. Z., Gardner, C. S., and Swenson, G. R. (2002). Characteristics of quasi-monochromatic gravity waves observed with Na LiDAR in the mesopause region at Starfire Optical Range, NM. Geophys. Res. Lett., 29(24), 22–1.

Huang, K. M., Liu, A. Z., Zhang, S. D., Yi, F., Huang, C. M., Gong, Y., Gan, Q., Zhang, Y. H., and Wang, R. (2017). Simultaneous upward and downward propagating inertia-gravity waves in the MLT observed at Andes Lidar Observatory. J. Geophys. Res. Atmos., 122(5), 2812–2830.

Kaifler, B., Lübken, F. J., Höffner, J., Morris, R. J., and Viehl, T. P. (2015). Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica. J. Geophys. Res. Atmos., 120(10), 4506–4521.

Kim, Y. H., Chun, H. Y., Park, S. H., Song, I. S., and Choi, H. J. (2016). Characteristics of gravity waves generated in the jet-front system in a baroclinic instability simulation. Atmos. Chem. Phys., 16(8), 4799–4815.

Kogure, M., Nakamura, T., Ejiri, M. K., Nishiyama, T., Tomikawa, Y., Tsutsumi, M., Suzuki, H., Tsuda, T. T., Kawahara, T. D., and Abo, M. (2017). Rayleigh/Raman LiDAR observations of gravity wave activity from 15 to 70 km altitude over Syowa (69°S, 40°E), the Antarctic. J. Geophys. Res. Atmos., 122(15), 7869–7880.

Li, T., Leblanc, T., McDermid, I. S., Wu, D. L., Dou, X. K., and Wang, S. (2010). Seasonal and interannual variability of gravity wave activity revealed by long-term LiDAR observations over Mauna Loa Observatory, Hawaii. J. Geophys. Res. Atmos., 115(D13), D13103.

Liu, A. Z., Lu, X., and Franke, S. J. (2013). Diurnal variation of gravity wave momentum flux and its forcing on the diurnal tide. J. Geophys. Res. Atmos., 118(4), 1668–1678.

Lu, X., Chu, X. Z., Fong, W., Chen, C., Yu, Z. B., Roberts, B. R., and McDonald, A. J. (2015). Vertical evolution of potential energy density and vertical wave number spectrum of Antarctic gravity waves from 35 to 105 km at McMurdo (77.8°S, 166.7°E). J. Geophys. Res. Atmos., 120(7), 2719–2737.

Lu, X., Chu, X. Z., Li, H. Y., Chen, C., Smith, J. A., and Vadas, S. L. (2017). Statistical characterization of high-to-medium frequency mesoscale gravity waves by LiDAR-measured vertical winds and temperatures in the MLT. J. Atmos. Sol.- Terr. Phys., 162, 3–15.

McDonald, A. J., Thomas, L., and Wareing, D. P. (1998). Night-to-night changes in the characteristics of gravity waves at stratospheric and lower-mesospheric heights. Ann. Geophys., 16(2), 229–237.

O’Sullivan, D., and Dunkerton, T. J. (1995). Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability. J. Atmos. Sci., 52(21), 3695–3716.<3695:GOIWIA>2.0.CO;2

Placke, M., Hoffmann, P., Gerding, M., Becker, E., and Rapp, M. (2013). Testing linear gravity wave theory with simultaneous wind and temperature data from the mesosphere. J. Atmos. Sol. -Terr. Phys., 93, 57–69.

Plougonven, R., and Teitelbaum, H. (2003). Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes. Geophys. Res. Let., 30(18), 1954.

Plougonven, R., Teitelbaum, H., and Zeitlin, V. (2003). Inertia gravity wave generation by the tropospheric midlatitude jet as given by the Fronts and Atlantic Storm-Track Experiment radio soundings. J. Geophys. Res. Atmos., 108(D21), 4686.

Shutts, G. J., and Vosper, S. B. (2011). Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137(655), 303–317.

Spiga, A., Teitelbaum, H., and Zeitlin, V. (2008). Identification of the sources of inertia-gravity waves in the Andes Cordillera region. Ann. Geophys., 26(9), 2551–2568.

Thomas, L., Worthington, R. M., and McDonald, A. J. (1999). Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region. Ann. Geophys., 17(1), 115–121.

Vaughan, G., and Worthington, R. M. (2007). Inertia-gravity waves observed by the UK MST radar. Quart. J. Roy. Meteor. Soc., 133(S2), 179–188.

Xia, H. Y., Dou, X. K., Sun, D. S., Shu, Z. F., Xue, X. H., Han, Y., Hu, D. D., Han, Y. L., and Cheng, T. D. (2012). Mid-altitude wind measurements with mobile Rayleigh Doppler LiDAR incorporating system-level optical frequency control method. Opt. Express, 20(14), 15286–15300.

Zhao, R. C., Dou, X. K., Sun, D. S., Xue, X. H., Zheng, J., Han, Y. L., Chen, T. D., Wang, G. C., and Zhou, Y. J. (2016). Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler LiDAR. Opt. Express, 24(6), A581–A591.

Zhao, R. C., Dou, X. K., Xue, X. H., Sun, D. S., Han, Y. L., Chen, C., Zheng, J., Li, Z. M., Zhou, A. R., … Chen, T. D. (2017). Stratosphere and lower mesosphere wind observation and gravity wave activities of the wind field in China using a mobile Rayleigh Doppler LiDAR. J. Geophys. Res. Space Phys., 122(8), 8847–8857.


Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047


ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006


GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics. doi: 10.26464/epp2021002


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040


KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: a universal time effect, Earth and Planetary Physics. doi: 10.26464/epp2021004


Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050


YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037


WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023


ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics. doi: 10.26464/epp2020059


ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007


Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012


QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011


Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004


Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou