Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Qin, J. F., Zou, H., Ye, Y. G., Hao, Y. Q., Wang, J. S., and Nielsen, E. (2020). A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs. Earth Planet. Phys., 4(4), 408–419doi: 10.26464/epp2020038

2020, 4(4): 408-419. doi: 10.26464/epp2020038


A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs


Institute of Space Physics and Applied Technology, School of Earth and Space Science, Peking University, Beijing 100871, China


National Center for Space Weather, China Meteorological Administration, Beijing 100081, China


Max Planck Institute for Solar System Research, Katlenburg-Lindau 37191, Germany

Corresponding author: Hong Zou,

Received Date: 2020-02-11
Web Publishing Date: 2020-07-31

Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km, which can also be obtained from the Mars Climate Database (MCD) and spacecraft aerobraking observations. In this research, we explain the method used to calculate neutral densities at 130 km via ionosphere observations and three long-period 130-km neutral density data sets at northern high latitudes (latitudes > 60°) acquired through ionospheric data measured by the Mars Global Surveyor (MGS) Radio Occultation Experiment. The calculated 130-km neutral density data, along with 130-km density data from the aerobraking observations of the MGS and Mars Odyssey (ODY) in the northern high latitudes, were compared with MCD outputs at the same latitude, longitude, altitude, solar latitude, and local time. The 130-km density data derived from both the ionospheric profiles and aerobraking observations were found to show seasonal variations similar to those in the MCD data. With a negative shift of about 2 × 1010 cm−3, the corrected 130-km neutral densities derived from MCD v4.3 were consistent with those obtained from the two different observations. This result means that (1) the method used to derive the 130-km neutral densities with ionospheric profiles was effective, (2) the MCD v4.3 data sets generally overestimated the 130-km neutral densities at high latitudes, and (3) the neutral density observations from the MGS Radio Science Experiment could be used to calibrate a new atmospheric model of Mars.

Key words: Martian upper atmosphere, Mars Climate Database v4.3, aerobraking observations, Mars global circulation

Bougher, S. W., Keating, G. M., Forbes, J. M., Murphy, J. R., Hollingsworth, J. L., Wilson, R. J., and Withers, P. G. (2001). The upper atmospheric wave structure of mars as determined by mars global surveyor. In AGU Fall Meeting Abstracts. San Francisco, California: AGU.222

Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., Chizek, M., and Ridley, A. (2015). Mars global ionosphere-thermosphere model: solar cycle, seasonal, and diurnal variations of the mars upper atmosphere. J. Geophys. Res. Planets, 120(2), 311–342.

Breus, T. K., Krymskii, A. M., Crider, D. H., Ness, N. F., Hinson, D., and Barashyan, K. K. (2004). Effect of the solar radiation in the topside atmosphere/ionosphere of Mars: Mars Global Surveyor observations. J. Geophys. Res. Space Phys., 109(A9), A09310.

Clancy, R. T., and Lee, S. W. (1991). A new look at dust and clouds in the mars atmosphere: analysis of emission-phase-function sequences from global Viking IRTM observations. Icarus, 93(1), 135–158.

Conrath, B. J., Pearl, J. C., Smith, M. D., Maguire, W. C., Christensen, P. R., Dason, S., and Kaelberer, M. S. (2000). Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: Atmospheric temperatures during aerobraking and science phasing. J. Geophys. Res. Planets, 105(E4), 9509–9519.

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Curry, S. M., Nagy, A. F., Halekas, J. S., Luhmann, J. G., Mahaffy, P., … Jakosky, B. M. (2015). Solar wind Mars interaction during the MAVEN Deep Dip campaigns: multi-fluid MHD simulations based upon the SWIA, NGIMS and MAG measurements. In American Astronomical Society, DPS Meeting #47. National Harbor, Maryland: AAS.222

Fjeldbo, G., Fjeldbo, W. C., and Eshleman, V. R. (1966). Models for the atmosphere of mars based on the mariner 4 occultation experiment. J. Geophys. Res., 71(9), 2307–2316.

Forget, F., Bibring, J. P., Bertaux, J. L., Formisano, V., Paetzold, M., Coll, M. A. I., Bottger, H., Douté, S., Drossart, P., … Schmitt, B. (2009). Analysis of the mars express observations of the atmosphere and the polar caps: interpretation with a global climate model. In First Mars Express Science Conference. Noordwijk, Netherlands: ESA/ESTEC.222

Fritts, D. C., Wang, L., and Tolson, R. H. (2006). Mean and gravity wave structures and variability in the mars upper atmosphere inferred from mars global surveyor and mars odyssey aerobraking densities. J. Geophys. Res. Space Phys., 111(A12), A12304.

González-Galindo, F., Bougher, S., López-Valverde, M. A., Forget, F., and Bell, J. (2006). Thermal structure of the Martian thermosphere: LMD-IAA GCM and MTGCM intercomparisons. In F. Forget, et al. (Eds.), Mars Atmosphere Modelling and Observations. Granada, Spain: LMD, IAA, AOPP, CNES, ESA.222

Gröller, H., Yelle, R. V., Montmessin, F., Lacombe, G., Schneider, N. M., Stewart, I., Deighan, J., McClintock, W. E., Clarke, J. T., … Jakosky, B. M. (2015). Martian CO2 and O2 abundances obtained from MAVEN/IUVS stellar occultations. In European Planetary Science Congress. Nantes, France.222

Herschel, W. (1784). On the remarkable appearances at the polar regions of the planet Mars, and its spheroidical figure; with a few hints relating to its real diameter and atmosphere. Phil. Trans., 74, 233–273.

Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. Planets, 104(E11), 26997–27012.

Hinson, D. P., Smith, M. D., and Conrath, B. J. (2004). Comparison of atmospheric temperatures obtained through infrared sounding and radio occultation by Mars Global Surveyor. J. Geophys. Res. Planets, 109(E12), E12002.

Jain, S., Stewart, I., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., … Jacosky, B. (2016). Martian upper atmosphere response to solar EUV flux and soft X-ray flares. AAS/division for Planetary Sciences Meeting. In AAS/Division for Planetary Sciences Meeting Abstracts #48. Pasadena, California.222

Jakosky, B. M., and Farmer, C. B. (1982). The seasonal and global behavior of water vapor in the mars atmosphere: complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res. Solid Earth, 87(B4), 2999–3019.

Keating, G. M., Theriot, M. Jr., Tolson, R., Bougher, S., Forget, F., and Forbes, J. (2003). Global measurements of the Mars upper atmosphere: In situ accelerometer measurements from Mars odyssey 2001 and Mars global surveyor. In Proceedings of the 34th Annual Lunar and Planetary Science Conference. League City, Texas.222

Keating, G. M., Bougher, S. W., Theriot, M. E., Tolson, R. H., Zurek, R. W., Blanchard, R. C., Murphy, J. R., and Bertaux, J. L. (2007). Mars neutral upper atmosphere temporal and spatial variations discovered from the accelerometer science experiment aboard Mars reconnaissance orbiter. In Proceedings of the 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII) (pp. 2074). League City, Texas: LPI.222

Keating, J. M., Bougher, S. W., Zurek, R. W., Tolson, R. H., Cancro, G. J., Noll, S. N., Parker, J. S., Schellenberg, T. J., Shane, R. W., … Babicke, J. M. (1998). The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars global surveyor. Science, 279(5357), 1672–1676.

Kleinböhl, A., Schofield, J. T., Kass, D. W., Abdou, W. A., Backus, C. R., Sen, B., Shirley, J. H., Lawson, W. G., Richardson, M. I., … McCleese, D. J. (2009). Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. Planets, 114(E10), E10006.

Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., and Smith, M. D. (2007). Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus, 192(2), 327–347.

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the maven NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957.

Medvedev, A. S., Yiğit, E., Kuroda, T., and Hartogh, P. (2013). General circulation modeling of the Martian upper atmosphere during global dust storms. J. Geophys. Res. Planets, 118(10), 2234–2246.

Millour, E., Forget, F., González-Galindo, F., Spiga, A., Lebonnois, S., Montabone, L., Lewis, S. R., Read, P. L., López-Valverde, M. A., … Huot, J. P. (2008). The latest (version 4.3) Mars climate database. In Third International Workshop on The Mars Atmosphere: Modeling and Observations. Williamsburg, Virginia: LPI.222

Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., … Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95.

Nier, A. O., and McElroy, M. B. (1976). Structure of the neutral upper atmosphere of mars: results from Viking 1 and Viking 2. Science, 194(4271), 1298–1300.

Qin, J. F., Zou, H., Ye, Y. G., Yin, Z. F., Wang, J. S., and Nielsen, E. (2019a). Effects of local dust storms on the upper atmosphere of Mars: Observations and simulations. J. Geophys. Res. Planets, 124(2), 602–616.

Qin, J. F., Zou, H., and Ye, Y. G. (2019b). Study of Mars’ upper atmosphere based on radio occultation observations. Spacecr. Environ. Eng. (in Chinese) , 36(6), 571–583.

Ryan, J. A. (1985). Mars atmospheric circulation: aspects from Viking landers. J. Geophys. Res. Space Phys., 90(A7), 6319–6325.

Tolson, R. H., Keating, G. M., Cancro, G. J., Parker, J. S., Noll, S. N., and Wilkerson, B. L. (1999). Application of accelerometer data to mars global surveyor aerobraking operations. J. Spacecr. Rockets, 36(3), 323–329.

Tolson, R. H., Dwyer, A. M., Hanna, J. L., Keating, G. M., George, B. E., Escalera, P. E., and Werner, M. R. (2005). Application of accelerometer data to mars odyssey aerobraking and atmospheric modeling. J. Spacecr. Rockets, 42(3), 435–443.

Wang, J. S. and Nielsen, E. (2013). Behavior of the Martian dayside electron density peak during global dust storms. Planetary and Space Science, 51(4–5), 329–338.

Wilson, R. J. (2002). Evidence for nonmigrating thermal tides in the mars upper atmosphere from the mars global surveyor accelerometer experiment. Geophys. Res. Lett., 29(7), 24-1–24-4.

Withers, P. and Pratt, R. (2013). An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus, 225(1), 378–389.

Zhang, M. H. G., Luhmann, J. G., Kliore, A. J., and Kim, J. (1990). A post- Pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods. J. Geophys. Res. Solid Earth, 95(B9), 14829–1483.

Zou, H., Wang, J. S., and Nielsen, E. (2005). Effect of the seasonal variations in the lower atmosphere on the altitude of the ionospheric main peak at Mars. J. Geophys. Res. Space Phys., 110(A9), A09311.

Zou, H., Wang, J. S., and Nielsen, E. (2006). Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation. J. Geophys. Res. Space Phys., 111(A7), A07305.

Zou, H., Lillis, R. J., Wang, J. S., and Nielsen, E. (2011). Determination of seasonal variations in the Martian neutral atmosphere from observations of ionospheric peak height. J. Geophys. Res. Planets, 116(E9), E09004.

Zou, H., Ye, Y. G., Wang, J. S., Nielsen, E., Cui, J., and Wang, X. D. (2016). A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars. J. Geophys. Res. Space Phys., 121(4), 3464–3475.

Zurek, R. W. (2017). Understanding mars and its atmosphere. In R. M. Haberle, et al. (Eds.), The Atmosphere and Climate of Mars (pp. 3–19). Cambridge: Cambridge University Press.222


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062


Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036


LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057


YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037


Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045


Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055


LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053


Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058


Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064


ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen