Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Cao, Y. T., Cui, J., Ni, B. B., Wu, X. S., Luo, Q., and He, Z. G. (2020). Bidirectional electron conic observations for photoelectrons in the Martian ionosphere. Earth Planet. Phys., 4(4), 403–407doi: 10.26464/epp2020037

2020, 4(4): 403-407. doi: 10.26464/epp2020037

PLANETARY SCIENCES

Bidirectional electron conic observations for photoelectrons in the Martian ionosphere

1. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

2. 

School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China

4. 

Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China

5. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2020-03-28
Web Publishing Date: 2020-07-31

Electron pitch angle distributions similar to bidirectional electron conics (BECs) have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements. BEC distribution, also termed “butterfly” distribution, presents a local minimum flux at 90° and a maximum flux before reaching the local loss cone. Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization. Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft, we identify 513 BEC events for 19–55 eV photoelectrons that were generated via photoionization only. Therefore, we are investigating electrons observed in regions well away from their source regions, to be distinguished from 115 eV electrons observed and produced in the same regions. We investigate the spatial distribution of the 19–55 eV BECs, revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies. We propose that the 19–55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.

Key words: Martian ionosphere, photoelectron, pitch angle distribution

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Réme, H., … Bauer, S. J. (1992). Mars observer magnetic fields investigation. J. Geophys. Res, 97(E5), 7799–7814. https://doi.org/10.1029/92JE00344

Adams, D., Xu, S., Mitchell, D. L., Lillis, R. L., Fillingim, M., Andersson, L., Fowler, C., Connerney, J. E. P., Espley, J., and Mazelle, C. (2018). Using magnetic topology to probe the sources of Mars’ nightside ionosphere. Geophys. Res. Lett., 45(22), 12,190–12,197. https://doi.org/10.1029/2018GL080629

Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., Kim, T. K., Kurth, W. S., Levin, S., … Zink, J. L. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophys. Res. Lett., 44(14), 7131–7139. https://doi.org/10.1002/2017GL073180

Bougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., Chizek, M., and Ridley, A. (2015). Mars global ionosphere–thermosphere model: solar cycle, seasonal, and diurnal variations of the mars upper atmosphere. J. Geophys. Res.: Planets, 120(2), 311–342. https://doi.org/10.1002/2014JE004715

Brain, D. A., Lillis, R. J., Mitchell, D. L., Halekas, J. S., and Lin, R. P. (2007). Electron pitch angle distributions as indicators of magnetic field topology near Mars. J. Geophys. Res.: Space Phys., 112(A9), A09201. https://doi.org/10.1029/2007JA012435

Cao, Y. T., Cui, J., Wu, X. S., Guo, J. P., and Wei, Y. (2019). Structural variability of the Nightside Martian ionosphere near the terminator: implications on plasma sources. J. Geophys. Res.: Planets, 124(6), 1495–1511. https://doi.org/10.1029/2019JE005970

Cao, Y. T., Cui, J., Wu, X. S., and Zhong, J. H. (2020). Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity. Earth Planet. Phys., 4(1), 17–22. https://doi.org/10.26464/epp2020008

Chen, Y., Friedel, R. H. W., Henderson, M. G., Claudepierre, S. G., Morley, S. K., and Spence, H. E. (2014). REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth’s outer radiation belt. J. Geophys. Res.: Space Phys., 119(3), 1693–1708. https://doi.org/10.1002/2013JA019431

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1–4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Cui, J., Galand, M., Yelle, R. V., Wei, Y., and Zhang, S. J. (2015). Day-to- night transport in the Martian ionosphere: Implications from total electron content measurements. J. Geophys. Res.: Space Phys., 120(3), 2333–2346. https://doi.org/10.1002/2014JA020788

Duru, F., Gurnett, D. A., Morgan, D. D., Winningham, J. D., Frahm, R. A., and Nagy, A. F. (2011). Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions. J. Geophys. Res.: Space Phys., 116(A10), A10316. https://doi.org/10.1029/2011JA016835

Fox, J. L., Brannon, J. F., and Porter, H. S. (1993). Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett., 20(13), 1339–1342. https://doi.org/10.1029/93GL01349

Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D. R., Kataria, D. O., Lundin, R., … Dierker, C. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182(2), 371–382. https://doi.org/10.1016/j.icarus.2006.01.014

Garnier, P., Steckiewicz, M., Mazelle, C., Xu, S., Mitchell, D., Holmberg, M. K. G., Halekas, J. S., Andersson, L., Brain, D. A., … Jakosky, B. M. (2017). The Martian photoelectron boundary as seen by MAVEN. J. Geophys. Res.: Space Phys., 122(10), 10,472–10,485. https://doi.org/10.1002/2017JA024497

Girazian, Z., Mahaffy, P. R., Lillis, R. J., Benna, M., Elrod, M., and Jakosky, B. M. (2017). Nightside ionosphere of Mars: Composition, vertical structure, and variability. J. Geophys. Res.: Space Phys., 122(4), 4712–4725. https://doi.org/10.1002/2016JA023508

Gu, X. D., Zhao, Z. Y., Ni, B. B., Shprits, Y., and Zhou, C. (2011). Statistical analysis of pitch angle distribution of radiation belt energetic electrons near the geostationary orbit: CRRES observations. J. Geophys. Res.: Space Phys., 116(A1), A01208. https://doi.org/10.1029/2010JA016052

Hamil, O., Cravens, T. E., Rahmati, A., Connerney, J. E. P., and Andersson, L. (2019). Pressure gradients driving ion transport in the topside Martian atmosphere. J. Geophys. Res.: Space Phys., 124(7), 6117–6126. https://doi.org/10.1029/2019ja026670

Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res.: Space Phys., 124(10), 8015–8022. https://doi.org/10.1029/2019JA026739

Lundin, R., Eliasson, L., Hultqvist, B., and Stasiewicz, K. (1987). Plasma ergization on auroral field lines as observed by the Viking spacecraft. Geophys. Res. Lett., 14(4), 443–446. https://doi.org/10.1029/GL014i004p00443

Ma, Y. J., Fang, X., Nagy, A. F., Russell, C. T., and Toth, G. (2014). Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res. Space Physics, 119(2), 1272–1286. https://doi.org/10.1002/2013JA019402

Ma, Q., Thorne, R. M., Li, W., Zhang, X. J., Mauk, B. H., Paranicas, C., Haggerty, D. K., Kurth, W. S., Connerney, J. E. P., … Bolton, S. J. (2017). Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass. Geophys. Res. Lett., 44(10), 4489–4496. https://doi.org/10.1002/2017GL072983

Menietti, J. D., and Weimer, D. R. (1998). DE observations of electric field oscillations associated with an electron conic. J. Geophys. Res.: Space Phys., 103(A1), 431–438. https://doi.org/10.1029/97JA02496

Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M.H., and Ness, N. F. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res.: Planets, 106(E10), 23,419–23,427. https://doi.org/10.1029/2000JE001435

Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1–4), 495–528. https://doi.org/10.1007/s11214-015-0232-1

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res.: Planets, 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., …Trotignon, J. G. (2004). The plasma environment of Mars. Space Sci. Rev., 111(1-2), 33–114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92

Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010). Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res.: Planets, 115(E12), E12009. https://doi.org/10.1029/2010JE003663

Ni, B. B., Zou, Z. Y., Li, X. L., Bortnik, J., Xie, L., and Gu, X. D. (2016). Occurrence characteristics of outer zone relativistic electron butterfly distribution: a survey of Van Allen Probes REPT measurements. Geophys. Res. Lett, 43(11), 5644–5652. https://doi.org/10.1002/2016GL069350

Ulusen, D., Brain, D. A., and Mitchell, D. L. (2011). Observation of conical electron distributions over Martian crustal magnetic fields. J. Geophys. Res.: Space Phys., 116(A7), A07214. https://doi.org/10.1029/2010JA016217

Weber, T., Brain, D., Mitchell, D., Xu, S. S., Connerney, J., and Halekas, J. (2017). Characterization of low-altitude Nightside Martian magnetic topology using electron pitch angle distributions. J. Geophys. Res.: Space Phys., 122(10), 9777–9789. https://doi.org/10.1002/2017JA024491

Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res.: Space Phys., 117(A12), A12307. https://doi.org/10.1029/2012JA018185

Wu, X. S., Cui, J., Cao, Y. T., Liu, L. J., Zhou, Z. J., Huang, Y. Y., He, F., and Wei, Y. (2019a). On the hardness of the photoelectron energy spectrum near Mars. J. Geophys. Res.: Planets, 124(11), 2745–2753. https://doi.org/10.1029/2019JE006093

Wu, X. S., Cui, J., Yu, J., Liu, L. J., and Zhou, Z. J. (2019b). Photoelectron balance in the dayside Martian upper atmosphere. Earth Planet. Phys., 3(5), 373–379. https://doi.org/10.26464/epp2019038

Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019c). The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res.: Planets, 124(3), 734–751. https://doi.org/10.1029/2018JE005895

Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, M., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, B. (2016). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527

Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, M., Mazelle, C., … Jakosky, B. (2017). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res.: Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467

Xu, S. S., Mitchell, D., Luhmann, J., Ma, Y. J., Fang, X. H., Harada, Y., Hara, T., Brain, D., Weber, T., … DiBraccio, G. A. (2017). High-altitude closed magnetic loops at mars observed by MAVEN. Geophys. Res. Lett., 44(22), 11,229–11,238. https://doi.org/10.1002/2017GL075831

Xu, S. S., Weber, T., Mitchell, D. L., Brain, D. A., Mazelle, C., DiBraccio, G. A., and Espley, J. (2019). A technique to infer magnetic topology at mars and its application to the terminator region. J. Geophys. Res.: Space Phys., 124(3), 1823–1842. https://doi.org/10.1029/2018JA026366

Yang, C., Su, Z. P., Xiao, F. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N.,… Funsten, H. O. (2017). A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region. Geophys. Res. Lett., 44(9), 3980–3990. https://doi.org/10.1002/2017GL073116

Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res.: Space Phys., 95(A10), 17,095–17,102. https://doi.org/10.1029/JA095iA10p17095

[1]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[2]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[3]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[4]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[5]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[6]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[7]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[8]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[9]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[10]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[11]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[12]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[13]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[14]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[15]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[16]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[17]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[18]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[19]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Bidirectional electron conic observations for photoelectrons in the Martian ionosphere

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He