Citation:
Gu, H., Cui, J., Niu, D. D., Dai, L. K., Huang, J. P., Wu, X. S., Hao, Y. Q., and Wei, Y. (2020). Observation of CO2++ dication in the dayside Martian upper atmosphere. Earth Planet. Phys., 4(4), 396–402doi: 10.26464/epp2020036
2020, 4(4): 396-402. doi: 10.26464/epp2020036
Observation of CO2++ dication in the dayside Martian upper atmosphere
1. | State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China |
2. | School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China |
3. | Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing 100101, China |
4. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
5. | School of Earth and Space Sciences, Beijing University, Beijing 100871, China |
6. | Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
7. | School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
Doubly charged positive ions (dications) are an important component of planetary ionospheres because of the large energy required for their formation. Observations of these ions are exceptionally difficult due to their low abundances; until now, only atomic dications have been detected. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements made on board the recent Mars Atmosphere and Volatile Evolution mission provide the first opportunity for decisive detection of molecular dications, CO2++ in this case, in a planetary upper atmosphere. The NGIMS data reveal a dayside averaged CO2++ distribution declining steadily from 5.6 cm−3 at 160 km to below 1 cm−3 above 200 km. The dominant CO2++ production mechanisms are double photoionization of CO2 below 190 km and single photoionization of CO2+ at higher altitudes; CO2++ destruction is dominated by natural dissociation, but reactions with atmospheric CO2 and O become important below 160 km. Simplified photochemical model calculations are carried out and reasonably reproduce the data at low altitudes within a factor of 2 but underestimate the data at high altitudes by a factor of 4. Finally, we report a much stronger solar control of the CO2++ density than of the CO2+ density .
Andersson, L., Ergun, R. E., Delory, G. T., Eriksson, A., Westfall, J., Reed, H., McCauly, J., Summers, D., and Meyers, D. (2015). The Langmuir Probe and Waves (LPW) instrument for MAVEN. Space Sci. Rev., 195(1–4), 173–198. https://doi.org/10.1007/s11214-015-0194-3 |
Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., and Jakosky, B. M. (2015). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett., 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146 |
Bizau, J. M., Cubaynes, D., Shorman, M. M. A., Guilbaud, S., Blancard, C., Lemaire, J., Thissen, R., Giuliani, A., Nicolas, C., and Milosavljević, A. R. (2012). Photoionization of atomic and molecular positively charged ions. J. Phys. Conf. Ser., 399, 012002. https://doi.org/10.1088/1742-6596/399/1/012002 |
Breig, E. L., Torr, M. R., Torr, D. G., Hanson, W. B., Hoffman, J. H., Walker, J. G. G., and Nier, A. O. (1977). Doubly charged atomic oxygen ions in the thermosphere, 1. Photochemistry. J. Geophys. Res., 82(7), 1008–1012. https://doi.org/10.1029/JA082i007p01008 |
Breig, E. L., Torr, M. R., and Kayser, D. C. (1982). Observations and photochemistry of O++ in the daytime thermosphere. J. Geophys. Res. Space Phys., 87(A9), 7653–7665. https://doi.org/10.1029/JA087iA09p07653 |
Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res. Planets, 120(2), 278–286. https://doi.org/10.1002/2014JE004726 |
Cui, J., Yelle, R. V., Zhao, L. L., Stone, S., Jiang, F. Y., Cao, Y. T., Yao, M. J., Koskinen, T. T., and Wei, Y. (2018). Astrophys. J. Lett., 853(2), L33. https://doi.org/10.3847/2041-8213/aaa89a |
Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1–4), 293–301. https://doi.org/10.1007/s11214-015-0195-2 |
Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., and Jakosky, B. M. (2015). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett., 42(21), 8846–8853. https://doi.org/10.1002/2015GL065280 |
Fox, J. L., and Victor, G. A. (1981). O++ in the Venusian ionosphere. J. Geophys. Res. Space Phys., 86(A4), 2438–2442. https://doi.org/10.1029/JA086iA04p02438 |
Fox, J. L. (2009). Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. Planets, 114(E12), E12005. https://doi.org/10.1029/2009JE003432 |
Franceschi, P., Thissen, R., Žabka, J., Roithová, J., Herman, Z., and Dutuit, O. (2003). Internal energy effects in the reactivity of CO22+ doubly charged molecular ions with CO2 and CO. Int. J. Mass Spectrom., 228(2–3), 507–516. https://doi.org/10.1016/S1387-3806(03)00157-X |
Frank, L. A., Paterson, W. R., Ackerson, K. L., Vasyliunas, V. M., Coroniti, F. V., and Bolton, S. J. (1996). Plasma observations at Io with the Galileo spacecraft. Science, 274(5286), 394–395. https://doi.org/10.1126/science.274.5286.394 |
Frank, L. A., and Paterson, W. R. (2001). Survey of thermal ions in the Io plasma torus with the Galileo spacecraft. J. Geophys. Res. Space Phys., 106(A4), 6131–6149. https://doi.org/10.1029/2000JA000159 |
Ghosh, S., Mahajan, K. K., Grebowsky, J. M., and Nath, N. (1995). Morphology of O++ ions and their maintenance in the nightside Venus ionosphere. J. Geophys. Res. Space Phys., 100(A12), 23983–23991. https://doi.org/10.1029/95JA01581 |
Gronoff, G., Lilensten, J., Simon, C., Witasse, O., Thissen, R., Dutuit, O., and Alcaraz, C. (2007). Modelling dications in the diurnal ionosphere of Venus. Astron. Astrophys., 465(2), 641–645. https://doi.org/10.1051/0004-6361:20065991 |
Gu, H., Cui, J., He, Z. G., and Zhong, J. H. (2020). A MAVEN investigation of O++ in the dayside Martian ionosphere. Earth Planet. Phys., 4(1), 11–16. https://doi.org/10.26464/epp2020009 |
Hoffman, J. H. (1967). Composition measurements of the topside ionosphere. Science, 155(3760), 322–324. https://doi.org/10.1126/science.155.3760.322 |
Hoffman, J. H., Dodson, W. H., Lippincott, C. R., and Hammack, H. D. (1974). Initial ion composition results from the Isis 2 satellite. J. Geophys. Res., 79(28), 4246–4251. https://doi.org/10.1029/JA079i028p04246 |
Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data, 31(3), 749–769. https://doi.org/10.1063/1.1481879 |
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson L., … Zurek, R. (2015). The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev., 195(1–4), 3–48. https://doi.org/10.1007/s11214-015-0139-x |
Lilensten, J., Witasse, O., Simon, C., Soldi-Lose, H., Dutuit, O., Thissen, R., and Alcaraz, C. (2005). Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Lett., 32(3), L03203. https://doi.org/10.1029/2004GL021432 |
Lilensten, J., Simon Wedlund, C., Barthélémy, M., Thissen, R., Ehrenreich, D., Gronoff, G., and Witasse, O. (2013). Dications and thermal ions in planetary atmospheric escape. Icarus, 222(1), 169–187. https://doi.org/10.1016/j.icarus.2012.09.034 |
Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., … Nolan, J. T. (2015). The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev., 195(1-4), 49–73. https://doi.org/10.1007/s11214-014-0091-1 |
Masuoka, T. (1994). Single- and double-photoionization cross sections of carbon dioxide (CO2) and ionic fragmentation of CO2+ and CO22+. Phys. Rev. A, 50(5), 3886–3894. https://doi.org/10.1103/PhysRevA.50.3886 |
Mathur, D., Andersen, L. H., Hvelplund, P., Kella, D., and Safvan, C. P. (1995). Long-lived, doubly charged diatomic and triatomic molecular ions. J. Phys. B At. Mol. Phys., 28(15), 3415–3426. https://doi.org/10.1088/0953-4075/28/15/027 |
Matta, M., Withers, P., and Mendillo, M. (2013). The composition of Mars' topside ionosphere: Effects of hydrogen. J. Geophys. Res. Space Phys., 118(5), 2681–2693. https://doi.org/10.1002/jgra.50104 |
Matta, M., Galand, M., Moore, L., Mendillo, M., and Withers, P. (2014). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78–88. https://doi.org/10.1016/j.icarus.2013.09.006 |
McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN suprathermal and thermal ion compostion (STATIC) instrument. Space Sci. Rev., 195(1-4), 199–256. https://doi.org/10.1007/s11214-015-0175-6 |
Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1–4), 495–528. https://doi.org/10.1007/s11214-015-0232-1 |
Peterson, W. K., Fowler, C. M., Andersson, L. A., Thiemann, E. M. B., Jain, S. K., Mayyasi, M., Esman, T. M., Yelle, R., Benna, M., and Espley, J. (2018). Martian electron temperatures in the subsolar region: MAVEN observations compared to a one-dimensional model. J. Geophys. Res. Space Phys., 123(7), 5960–5973. https://doi.org/10.1029/2018JA025406 |
Schunk, R. W., and Nagy, A. F. (2009). Ionospheres: Physics, Plasma Physics, and Chemistry (2nd ed). New York: Cambridge Univ. Press.222 |
Seiersen, K., Al-Khalili, A., Heber, O., Jensen, M. J., Nielsen, I. B., Pedersen, H. B., Safvan, C. P., and Andersen, L. H. (2003). Dissociative recombination of the cation and dication of CO2. Phys. Rev. A, 68(2), 022708. https://doi.org/10.1103/PhysRevA.68.022708 |
Simon, C., Lilensten, J., Dutuit, O., Thissen, R., Witasse, O., Alcaraz, C., and Soldi-Lose, H. (2005). Prediction and modelling of doubly-charged ions in the Earth’s upper atmosphere. Ann. Geophys., 23(3), 781–797. https://doi.org/10.5194/angeo-23-781-2005 |
Slattery, A. E., Field, T. A., Ahmad, M., Hall, R. I., Lambourne, J., Penent, F., Lablanquie, P., and Eland, J. H. D. (2005). Spectroscopy and metastability of CO22+ molecular ions. J. Chem. Phys., 122(8), 084317. https://doi.org/10.1063/1.1850895 |
Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res. Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559 |
Taylor, Jr. H. A. (1973). Parametric description of thermospheric ion composition results. J. Geophys. Res., 78(1), 315–319. https://doi.org/10.1029/JA078i001p00315 |
Taylor, H. A., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H., and Cordier, G. R. (1980). Bennett ion mass spectrometers on the Pioneer Venus Bus and orbiter. IEEE Trans. Geosci. Remote Sens., GE-18(1), 44–49. https://doi.org/10.1109/TGRS.1980.350259 |
Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512 |
Thissen, R., Witasse, O., Dutuit, O., Wedlund, C. S., Gronoff, G., and Lilensten, J. (2011). Doubly-charged ions in the planetary ionospheres: a review. Phys. Chem. Chem. Phys., 13(41), 18264–18287. https://doi.org/10.1039/C1CP21957J |
Witasse, O., Dutuit, O., Lilensten, J., Thissen, R., Zabka, J., Alcaraz, C., Blelly, P. L., Bougher, S. W., Engel, S., … Seiersen, K. (2002). Prediction of a CO22+ layer in the atmosphere of Mars. Geophys. Res. Lett., 29(8), 104–1. https://doi.org/10.1029/2002GL014781 |
Witasse, O., Dutuit, O., Lilensten, J., Thissen, R., Zabka, J., Alcaraz, C., Blelly, P. L., Bougher, S. W., Engel, S., … Seiersen, K. (2003). Correction to “Prediction of a CO22+ layer in the atmosphere of Mars”. Geophys. Res. Lett., 30(7), 1360. https://doi.org/10.1029/2003GL017007 |
Withers, P., Vogt, M., Mahaffy, P., Benna, M., Elrod, M., and Jakosky, B. (2015). Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN. Geophys. Res. Lett., 42(21), 9071–9079. https://doi.org/10.1002/2015GL065985 |
Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019). The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res. Planets, 124(3), 734–751. https://doi.org/10.1029/2018JE005895 |
[1] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[2] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
[3] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[4] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[5] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[6] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[7] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[8] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[9] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[10] |
Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051 |
[11] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[12] |
Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006 |
[13] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[14] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[15] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[16] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[17] |
JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)