Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Xiao, C., Liu, W. L., Zhang, D. J., and Zhang, Z. (2020). A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements. Earth Planet. Phys., 4(3), 266–273doi: 10.26464/epp2020031

2020, 4(3): 266-273. doi: 10.26464/epp2020031


A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements


School of Space and Environment, Beihang University, Beijing 102206, China


Key Laboratory of Space Environment monitoring and Information Processing of MIIT, Beijing 102206, China

Corresponding author: WenLong Liu,

Received Date: 2020-02-05
Web Publishing Date: 2020-05-01

Nine years (2001–2009) of data from the Cluster spacecraft are analyzed in this study of the Earth’s mid- and high-altitude (2–9RE) cusp. Properties of the cusp region, and its location and size in the Solar Magnetic coordinate system, are studied statistically. The survey shows that (1) the relationships between X and Z are nearly linear for the poleward, equatorward boundaries and the center of the cusp; (2) the relationship between cusp width in the X direction and Z can be expressed by a quadratic function; (3) the cusp region is almost dawn-dusk symmetric for the cusp width in the X direction. Based on topology information, a new normalized statistical methodology is developed to organize the measurements of cusp crossings to obtain distributions of magnetic field and plasma parameters in the XZ plane. The statistical results show that (1) Bx is mostly negative and Bz is always negative; (2) proton velocity is found to be positive for Vx and Vz at low altitudes, while Vx and Vz are negative on the equator side and negative Vx and positive Vz on the pole side at high altitudes; (3) proton density is higher on the equator side than on the pole side. Results reported here will be useful in suggesting directions for future cusp research.

Key words: cusp, statistical study, new methodology, topology

Cao, D., Fu, H. S., Cao, J. B., Wang, T. Y., Graham, D. B., Chen, Z. Z., Peng, F. Z., Huang, S. Y., Khotyaintsev, Y. V., … Burch, J. L. (2017). MMS observations of whistler waves in electron diffusion region. Geophys. Res. Lett., 44(9), 3954–3962.

Cao, J. B., Leonovich, A., Zhou, G. C., Liu, Z. X., Reme, H., Dandouras, I. (2005). A theoretic interpretation of movement of the cusp equatorward boundary. Chinese Journal of Space Science, 25(5), 412–417.

Cargill, P. J., Lavraud, B., Owen, C. J., Grison, B., Dunlop, M. W., Cornilleau-Wehrlin, N., Escoubet, C. P., Paschmann, G., Phan, T. D., … Nykyri, K. (2005). Cluster at the magnetospheric cusps. Space Sci. Rev., 118(1-4), 321–366.

Chapman, S., and Ferraro, V. C. A. (1930). A new theory of magnetic storms. Nature, 126(3169), 129–130.

Chen, J. S., and Fritz, T. A. (1998). Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett., 25(22), 4113–4116.

Chen, J. S., Fritz, T. A., and Sheldon, R. B. (2005). Comparison of energetic ions in cusp and outer radiation belt. J. Geophys. Res., 110(A12), A12219.

Delcourt, D. C., and Sauvaud, J. A. (1999). Populating of the cusp and boundary layers by energetic (hundreds of keV) equatorial particles. J. Geophys. Res., 104(A10), 22635–22648.

Duan, S. P., Liu, Z. X., Cao, J. B., Shi, J. K., Lu, L., Li, Z. Y., Zong, Q.-G., Reme, H., Cornilleau-Wehrlin, N., Balogh, A., Andre, M. (2006). Analysis of the interaction between low-frequency waves and ions in the high-altitude cusp region observed by satellite Cluster. Chinese Physics Letters, 23(5), 1351–1354.

Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6(2), 47–48.

Dunlop, M. W., Lavraud, B., Cargill, P., Taylor, M. G. G. T., Balogh, A., Réme, H., Decreau, P., Glassmeier, K.-H., Elphic, R. C., … Marchaudon, A. (2005). Cluster observations of the cusp: magnetic structure and dynamics. In T. A. Fritz, et al. (Eds.), The Magnetospheric Cusps: Structure and Dynamics (pp. 5–55). Dordrecht: Springer.

Escoubet, C., and Bosqued, J. M. (1989). The influence of IMF-Bz and/or AE on the polar cusp: an overview of observations from the AUREOL-3 satellite. Planet. Space Sci., 37(5), 609–626.

Grigoriev, A. Y., Fedorov, A. O., Budnik, E. Y., and Nikolaeva, N. S. (1999). Magnetospheric magnetic field in the outer cusp region: comparison of measurements obtained from the INTERBALL-1 satellite and from the T96 model. Cosmic Res., 37(6), 594–599.

Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C. (1978). The frontside boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res., 83(A7), 3195–3216.

Haerendel, G., and Paschmann, G. (1982). Interaction of the solar wind with the dayside magnetosphere. In A. Nishida (Ed.), Magnetospheric Plasma Physics (pp. 81–122). Dordrecht: D. Reidel Publishing.222

Heikkila, W. J., and Winningham, J. D. (1971). Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps. J. Geophys. Res., 76(4), 883–891.

Heikkila, W. J. (1985). Definition of the cusp. In J. A. Holtet, et al. (Eds.), The Polar Cusp (pp. 387–395). Dordrecht: Springer.

Johnsen, M. G., and Lorentzen, D. A. (2012). A statistical analysis of the optical dayside open/closed field line boundary. J. Geophys. Res., 117(A2), A02218.

Lavraud, B., Dunlop, M. W., Phan, T. D., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Lundin, R., Taylor, M. G. G. T., … Balogh, A. (2002). Cluster observations of the exterior cusp and its surrounding boundaries under northward IMF. Geophys. Res. Lett., 29(20), 1995.

Lavraud, B., Phan, T. D., Dunlop, M. W., Taylor, M. G. G. G. T., Cargill, P. J., Bosqued, J. M., Dandouras, I., Rème, H., Sauvaud. J. A., … Fazakerley, A. (2004). The exterior cusp and its boundary with the magnetosheath: Cluster multi-event analysis. Ann. Geophys., 22(8), 3039–3054.

Lavraud, B., Fedorov, A., Budnik, E., Thomsen, M. F., Grigoriev, A., Cargill, P. J., Dunlop, M. W., Rème, H., Dandouras, I., and Balogh, A. (2005). High-altitude cusp flow dependence on IMF orientation: a 3-year Cluster statistical study. J. Geophys. Res., 110(A2), A02209.

Le, G., Blanco-Cano, X., Russell, C. T., Zhou, X. W., Mozer, F., Trattner, K. J., Fuselier, S. A., and Anderson, B. J. (2001). Electromagnetic ion cyclotron waves in the high-altitude cusp: Polar observations. J. Geophys. Res., 106(A9), 19067–19079.

Liu, W. L., Tu, W. C., Li, X. L., Sarris, T., Khotyaintsev, Y., Fu, H. S., Zhang, H., and Shi, Q. Q. (2016). On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophys. Res. Lett., 43(3), 1023–1030.

Lockwood, M., and Smith, M. F. (1992). The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. J. Geophys. Res., 97(A10), 14841–14847.

Lockwood, M., and Smith, M. F. (1994). Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations: 1. Theory. J. Geophys. Res., 99(A5), 8531–8553.

Mĕrka, J., Šafránková, J., and Nĕmeček, Z. (2002). Cusp-like plasma in high altitudes: a statistical study of the width and location of the cusp from Magion-4. Ann. Geophys., 20(3), 311–320.

Newell, P. T., and Meng, C.-I. (1987). Cusp width and Bz: Observations and a conceptual model. J. Geophys. Res., 92(A12), 13673–13678.

Newell, P. T., and Meng, C.-I. (1989). Dipole tilt angle effects on the latitude of the cusp and cleft/low-latitude boundary layer. J. Geophys. Res., 94(A6), 6949–6953.

Newell, P. T., Meng, C.-I., Sibeck, D. G., and Lepping, R. (1989). Some low-altitude cusp dependencies on the interplanetary magnetic field. J. Geophys. Res., 94(A7), 8921–8927.

Newell, P. T., and Meng, C.-I. (1994). Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions. J. Geophys. Res., 99(A1), 273–286.

Niehof, J. T., Fritz, T. A., Friedel, R. H. W., and Chen, J. S. (2010). Size and location of cusp diamagnetic cavities observed by Polar. J. Geophys. Res., 115(A7), A07201.

Nykyri, K., Cargill, P. J., Lucek, E., Horbury, T., Lavraud, B., Balogh, A., Dunlop, M. W., Bogdanova, Y., Fazakerley, A., … Rème, H. (2004). Cluster observations of magnetic field fluctuations in the high-altitude cusp. Ann. Geophys., 22(7), 2413–2429.

Nykyri, K., Grison, B., Cargill, P. J., Lavraud, B., Lucek, E., Dandouras, I., Balogh, A., Cornilleau-Wehrlin, N., and Rème, H. (2006). Origin of the turbulent spectra in the high-altitude cusp: cluster spacecraft observations. Ann. Geophys., 24(3), 1057–1075.

Nykyri, K., Otto, A., Adamson, E., Dougal, E., and Mumme, J. (2011). Cluster observations of a cusp diamagnetic cavity: Structure, size, and dynamics. J. Geophys. Res., 116(A3), A03228.

Palmroth, M., Laakso, H., and Pulkkinen, T. I. (2001). Location of high-altitude cusp during steady solar wind conditions. J. Geophys. Res., 106(A10), 21109–21122.

Paschmann, G., Haerendel, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P. C. (1976). Plasma and magnetic field characteristics of the distant polar cusp near local noon: the entry layer. J. Geophys. Res., 81(16), 2883–2899.

Peng, F. Z., Fu, H. S., Cao, J. B., Graham, D. B., Chen, Z. Z., Cao, D., Xu, Y., Huang, S. Y., Wang, T. Y., … Burch, J. L. (2017). Quadrupolar pattern of the asymmetric guide-field reconnection. J. Geophys. Res., 122(6), 6349–6356.

Pitout, F., Escoubet, C. P., Bogdanova, Y. V., Georgescu, E., Fazakerley, A. N., and Rème, H. (2006). Response of the mid-altitude cusp to rapid rotations of the IMF. Geophys. Res. Lett., 33(11), L11107.

Prölss, G. W. (2006). Electron temperature enhancement beneath the magnetospheric cusp. J. Geophys. Res., 111(A7), A07304.

Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., … Sonnerup, B. (2001). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19(10-12), 1303–1354.

Rosenbauer, H., Grünwaldt, H., Montgomery, M. D., Paschmann, G., and Sckopke, N. (1975). Heos 2 plasma observations in the distant polar magnetosphere: the plasma mantle. J. Geophys. Res., 80(19), 2723–2737.

Russell, C. T., and Elphic, R. C. (1979). ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett., 6(1), 33–36.

Russell, C. T., Fedder, J. A., Slinker, S. P., Zhou, X. W., Le, G., Luhmann, J. G., Fenrich, F. R., Chandler, M. O., Moore, T. E., and Fuselier, S. A. (1998). Entry of the POLAR spacecraft into the polar cusp under northward IMF conditions. Geophys. Res. Lett., 25(15), 3015–3018.

Savin, S., Büchner, J., Consolini, G., Nikutowski, B., Zelenyi, L., Amata, E., Auster, H. U., Blecki, J., Dubinin, E., …Yermolaev, Y. (2002). On the properties of turbulent boundary layer over polar cusps. Nonlinear Processes Geophys., 9(5-6), 443–451.

Savin, S., Zelenyi, L., Romanov, S., Sandahl, I., Pickett, J., Amata, E., Avanov, L., Blecki, J., Budnik, E., … Yermolaev, Y. (2004). Magnetosheath-cusp interface. Ann. Geophys., 22(1), 183–212.

Savin, S. P., Romanov, S. A., Fedorov, A. O., Zelenyi, L., Klimov, S. I., Yermolaev, Y. I., Budnik, E. Y., Nikolaeva, N. S., Russell, C. T., … Reiff, P. H. (1998). The cusp/magnetosheath interface on May 29, 1996: interball-1 and Polar observations. Geophys. Res. Lett., 25(15), 2963–2966.

Sckopke, N., Paschmann, G., Rosenbauer, H., and Fairfield, D. H. (1976). Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle. J. Geophys. Res., 81(16), 2687–2691.

Sckopke, N., and Paschmann, G. (1978). The plasma mantle. A survey of magnetotail boundary layer observations. J. Atmos. Terr. Phys., 40(3), 261–278.

Sheldon, R. B., Spence, H. E., Sullivan, J. D., Fritz, T. A., and Chen, J. S. (1998). The discovery of trapped energetic electrons in the outer cusp. Geophys. Res. Lett., 25(11), 1825–1828.

Shen, C., Dunlop, M., Ma, Y. H., Chen, Z. Q., Yan, G. Q., Liu, Z. X., Bogdanova, Y. V., Sibeck, D. G., Carr, C. M., … Lucek, E. (2011). The magnetic configuration of the high-latitude cusp and dayside magnetopause under strong magnetic shears. J. Geophys. Res., 116(A9), A09228.

Shi, Q. Q., Zong, Q.-G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., … Lucek, E. (2009a). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J. Geophys. Res., 114(A12), A12219.

Shi, Q. Q., Pu, Z. Y., Soucek, J., Zong, Q.-G., Fu, S. Y., Xie, L., Chen, Y., Zhang, H., Li, L., … Rème, H. (2009b). Spatial structures of magnetic depression in the Earth’s high-altitude cusp: cluster multipoint observations. J. Geophys. Res., 114(A10), A10202.

Tsyganenko, N. A., and Stern, D. P. (1996). Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res., 101(A12), 27187–27198.

Walsh, B. M., and Fritz, T. A. (2011). Cluster energetic electron survey of the high-altitude cusp and adjacent regions. J. Geophys. Res., 116(A12), A12212.

Wang, T. Y., Cao, J. B., Fu, H. S., Liu, W. L., and Dunlop, M. (2014). Turbulence in the Earth’s cusp region: The k-filtering analysis. J. Geophys. Res., 119(12), 9527–9542.

Xiao, C., Liu, W. L., Shen, C., Zhang, H., and Rong, Z. J. (2018). Study on the curvature and gradient of the magnetic field in Earth’s cusp region based on the magnetic curvature analysis method. J. Geophys. Res., 123(5), 3794–3805.

Yu, Y. Q., and Ridley, A. J. (2009). Response of the magnetosphere-ionosphere system to a sudden southward turning of interplanetary magnetic field. J. Geophys. Res., 114(A3), A03216.

Yu, Y. Q., and Ridley, A. J. (2013). Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics: Dependence on the source location. J. Geophys. Res., 118(4), 1711–1722.

Zhang, H., Fritz, T. A., Zong, Q.-G., and Daly, P. W. (2005). Stagnant exterior cusp region as viewed by energetic electrons and ions: A statistical study using Cluster Research with Adaptive Particle Imaging Detectors (RAPID) data. J. Geophys. Res., 110(A5), A05211.

Zhang, H., Fritz, T. A., Zong, Q.-G., and Daly, P. W. (2006). The high latitude boundaries under extreme solar wind conditions: a cluster perspective. In W. H. Ip, et al. (Eds.), Advances in Geosciences (pp. 163–172). Hackensack: World Scientific.

Zhang, H., Dunlop, M. W., Zong, Q.-G., Fritz, T. A., Balogh, A., and Wang, Y. (2007). Geometry of the high-latitude magnetopause as observed by Cluster. J. Geophys. Res., 112(A2), A02204.

Zhou, X. W., Russell, C. T., Le, G., Fuselier, S. A., and Scudder, J. D. (1999). The polar cusp location and its dependence on dipole tilt. Geophys. Res. Lett., 26(3), 429–432.

Zhou, X. W., Russell, C. T., Le, G., Fuselier, S. A., and Scudder, J. D. (2000). Solar wind control of the polar cusp at high altitude. J. Geophys. Res., 105(A1), 245–251.

Zhou, X.-Z., Fritz, T. A., Zong, Q.-G., Pu, Z. Y., Hao, Y.-Q., and Cao, J.-B. (2006). The cusp: a window for particle exchange between the radiation belt and the solar wind. Ann. Geophys., 24(11), 3131–3137.

Zong, Q.-G., Fritz, T. A., Zhang, H., Korth, A., Daly, P. W., Dunlop, M. W., Glassmeier, K.-H., Rème, H., and Balogh, A. (2004). Triple cusps observed by Cluster—Temporal or spatial effect?. Geophys. Res. Lett., 31(9), L09810.

Zong, Q.-G., Fritz, T. A., Spence, H., Zhang, H., Huang, Z. Y., Pu, Z. Y., Glassmeier, K.-H., Korth, A., Daly, P. W., … Rème, H. (2005). Plasmoid in the high latitude boundary/cusp region observed by Cluster. Geophys. Res. Lett., 32(1), L01101.

Zong, Q.-G., Fritz, T. A., Zhang, H., Fu, S. Y., Zhou, X. Z., Goldstein, M. L., Daly, P. W., Rème, H., Balogh, A., and Fazakerley, A. N. (2006). The magnetospheric cusp: structure and dynamics. In W. H. Ip, et al. (Eds.), Advances in Geosciences (pp. 173–189). Hackensack: World Scientific.


Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012


Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039


Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051


Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037


Stuart Crampin, Yuan Gao, 2018: Evidence supporting New Geophysics, Earth and Planetary Physics, 2, 173-188. doi: 10.26464/epp2018018


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004


Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014


HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007


Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements

Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang