Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Li, Y. S., Sun, J. M., Zhang, Z. L., Su, B., Tian, S. C., Cao, M. M. (2020). Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin. Earth Planet. Phys., 4(3), 308–316doi: 10.26464/epp2020030

2020, 4(3): 308-316. doi: 10.26464/epp2020030


Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin


Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China


University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: JiMin Sun,

Received Date: 2019-12-17
Web Publishing Date: 2020-05-01

Thick sediments from foreland basins usually provide valuable information for understanding the relationships between mountain building, rock denudation, and sediment deposition. In this paper, we report environmental magnetic measurements performed on the Miocene sediments in the Subei Basin, northeastern Tibetan Plateau. Our results show two different patterns. First, the bulk susceptibility and SIRM, ARM, and HIRM mainly reflect the absolute-concentration of magnetic minerals; all have increased remarkably since 13.7 Ma, related to provenance change rather than climate change. Second, the ratios of IRM100mT/SIRM, IRM100mT/IRM30mT, and IRM100mT/IRM60mT, together with the redness and S ratio, reflect the relative-concentration of hematite, being climate-dependent. Their vertical changes correlate in general with the long-term Miocene climatic records of marine oxygen isotope variations, marked by the existence of higher ratios between 17 and 14 Ma. This may imply that global climate change, rather than uplift of the Tibetan Plateau, played a dominant role in the long-term climatic evolution of the Subei area from the early to middle Miocene.

Key words: Environmental magnetism, MMCO, global cooling, the Subei Basin

Abdul Aziz, H., Krijgsman, W., Hilge°Cn, F. J., Wilson, D. S., and Calvo, J. P. (2003). An astronomical polarity timescale for the late middle Miocene based on cyclic continental sequences. J. Geophy. Res.: Solid Earth, 108(B3), 2159.

Abreu, V. S., and Haddad, G. A. (1998). Glacioeustatic fluctuations: the mechanism linking stable isotope events and sequence stratigraphy from the Early Oligocene to Middle Miocene. In P. C. de Graciansky, et al. (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. London: SEPM Society for Sedimentary Geology.

An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833), 62–66.

Ao, H., Deng, C. L., Dekkers, M. J., and Liu, Q. S. (2010). Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett., 292(1-2), 191–200.

Aziz, H. A., van Dam, J., Hilgen, F. J., and Krijgsman, W. (2004). Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth Planet. Sci. Lett., 222(1), 243–258.

Balsam, W. L., Deaton, B. C., and Damuth, J. E. (1999). Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Mar. Geol., 161(2-4), 141–153.

Bovet, P. M., Ritts, B. D., Gehrels, G., Abbink, A. O., Darby, B., and Hourigan, J. (2009). Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. Am. J. Sci., 309(4), 290–329.

Collinson, D. W. (1983). Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instruments. London: Chapman & Hall.222

Deng, C. L., Vidic, N. J., Verosub, K. L., Singer, M. J., Liu, Q. S., Shaw, J., and Zhu, R. X. (2005). Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J. Geophys. Res.: Solid Earth, 110(B3), B03103.

Deng, C. L., Shaw, J., Liu, Q. S., Pan, Y. X., and Zhu, R. X. (2006). Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: implications for Quaternary development of Asian aridification and cooling. Earth Planet. Sci. Lett., 241(1-2), 248–259.

Fang, X. M., Zan, J. B., Appel, E., Lu, Y., Song, C. H., Dai, S., and Tuo, S. B. (2015). An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys. J. Int., 201(1), 78–89.

Flower, B. P., and Kennett, J. P. (1994). The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr., Palaeoclimatol., Palaeoecol., 108(3-4), 537–555.

Flower, B. P. (1999). Palaeoclimatology: Warming without high CO2?. Nature, 399(6734), 313–314.

Fu, C. F., Qiang, X. K., Xu, X. W., Xi, J. J., Zuo, J., and An, Z. S. (2018). Late Miocene magnetostratigraphy of Jianzha Basin in the northeastern margin of the Tibetan Plateau and changes in the East Asian summer monsoon. Geol. J., 53(S1), 282–292.

Gilder, S., Chen, Y., and Sen, S. (2001). Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia. J. Geophys. Res. Solid Earth, 106(B12), 30505–30521.

Guan, C., Chang, H., Yan, M. D., Li, L. Y., Xia, M. M., Zan, J. B., and Liu, S. C. (2019). Rock magnetic constraints for the Mid-Miocene Climatic Optimum from a high-resolution sedimentary sequence of the northwestern Qaidam Basin, NE Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 532, 109263.

Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877), 159–163.

Hao, Q. Z., Oldfield, F., Bloemendal, J., and Guo, Z. T. (2008). The magnetic properties of loess and paleosol samples from the Chinese Loess Plateau spanning the last 22 million years. Palaeogeogr., Palaeoclimatol., Palaeoecol., 260(3-4), 389–404.

He, P. J., Song, C. H., Wang, Y. D., Meng, Q. Q., Chen, L. H., Yao, L. J., Huang, R. H., Feng, W., and Chen, S. (2018). Cenozoic deformation history of the Qilian Shan (northeastern Tibetan Plateau) constrained by detrital apatite fission-track thermochronology in the northeastern Qaidam Basin. Tectonophysics, 749, 1–11.

Heller, F., and Tungsheng, L. (1984). Magnetism of Chinese loess deposits. Geophysical Journal International, 77(1), 125–141.

Helmke, J. P., Schulz, M., and Bauch, H. A. (2002). Sediment-color record from the Northeast Atlantic Reveals patterns of millennial-Scale Climate variability during the Past 500, 000 years. Quat. Res., 57(1), 49–57.

Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N. (2014). Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19–22.

Hui, Z. C., Zhang, J., Ma, Z. H., Li, X. M., Peng, T. J., Li, J. J., and Wang, B. (2018). Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data. Palaeogeogr., Palaeoclimatol., Palaeoecol., 512, 106–117.

Jiang, H. C., Ji, J. L., Gao, L., Tang, Z. H., and Ding, Z. L. (2008). Cooling-driven climate change at 12–11 Ma: Multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 265(1-2), 148–158.

Larsson, L. M., Dybkjær, K., Rasmussen, E. S., Piasecki, S., Utescher, T., and Vajda, V. (2011). Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeogr., Palaeoclimatol., Palaeoecol., 309(3-4), 161–175.

Li, J. F., Zhang, Z. C., Tang, W. H., Li, K., Luo, Z. W., and Li, J. (2014). Provenance of Oligocene–Miocene sediments in the Subei area, eastern Altyn Tagh fault and its geological implications: Evidence from detrital zircons LA-ICP-MS U–Pb chronology. J. Asian Earth Sci., 87, 130–140.

Li, J. J., Fang, X. M., Van der Voo, R., Zhu, J. J., Mac Niocaill, C., Cao, J. X., Zhong, W., Chen, H. L., Wang, J. L., … Zhang, Y. C. (1997). Late Cenozoic magnetostratigraphy (11–0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geol. Mijnbouw, 76(1–2), 121–134.

Lin, X., Zheng, D. W., Sun, J. M., Windley, B. F., Tian, Z. H., Gong, Z. J., and Jia, Y. Y. (2015). Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. J. Asian Earth Sci., 111, 302–311.

Lin, X. B., Wyrwoll, K. H., Chen, H. L., and Cheng, X. G. (2016). On the timing and forcing mechanism of a mid-Miocene arid climate transition at the NE margins of the Tibetan Plateau: stratigraphic and sedimentologic evidence from the Sikouzi Section. Int. J. Earth Sci., 105(3), 1039–1049.

Liu, Q. S., Deng, C. L., Torrent, J., and Zhu, R. X. (2007). Review of recent developments in mineral magnetism of the Chinese loess. Quat. Sci. Rev., 26(3–4), 368–385.

Liu, Q. S., Roberts, A. P., Larrasoana, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., and Oldfield, F. (2012). Environmental magnetism: principles and applications. Rev. Geophys., 50(4), RG4002.

Miao, Y. F., Fang, X. M., Herrmann, M., Wu, F. L., Zhang, Y. Z., and Liu, D. L. (2011). Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr., Palaeoclimatol., Palaeoecol., 299(1-2), 30–38.

Miao, Y. F., Herrmann, M., Wu, F. L., Yan, X. L., and Yang, S. L. (2012). What controlled Mid–Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev., 112(3–4), 155–172.

Miller, K. G., Wright, J. D., and Fairbanks, R. G. (1991). Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res.: Solid Earth, 96(B4), 6829–6848.

Molnar, P., England, P., and Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31(4), 357–396.

Nagao, S., and Nakashima, S. (1992). The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Mar. Geol., 109(1-2), 83–94.

Raymo, M. E., and Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117–122.

Ritts, B. D., Yue, Y. J., and Graham, S. A. (2004). Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh fault, northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay basins. J. Geol., 112(2), 207–229.

Rousse, S., Kissel, C., Laj, C., Eiríksson, J., and Knudsen, K. L. (2006). Holocene centennial to millennial-scale climatic variability: Evidence from high-resolution magnetic analyses of the last 10 cal kyr off North Iceland (core MD99-2275). Earth Planet. Sci. Lett., 242(3-4), 390–405.

Sayem, A. S. M., Guo, Z. T., Wu, H. B., Zhang, C. X., Yang, F., Xiao, G. Q., and He, Z. L. (2018). Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau. Sci. China Earth Sci., 61(9), 1292–1305.

Song, C. H., Hu, S. H., Han, W. X., Zhang, T., Fang, X. M., Gao, J. P., and Wu, F. L. (2014). Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 395, 67–76.

Song, Y. G., Wang, Q. S., An, Z. S., Qiang, X. K., Dong, J. B., Chang, H., Zhang, M. S., and Guo, X. H. (2018). Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin, Northern China. Palaeogeogr., Palaeoclimatol., Palaeoecol., , 46–55.

Sun, J. M., and Liu, T. S. (2000). Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth Planet. Sci. Lett., 180(3-4), 287–296.

Sun, J. M., Liu, T. S., and An, Z. S. (2005). Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault. Earth Planet. Sci. Lett., 235(3–4), 641–653.

Sun, J. M., and Zhang, Z. Q. (2008). Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Global Planet. Change, 64(1-2), 53–68.

Turco, E., Hilgen, F. J., Lourens, L. J., Shackleton, N. J., and Zachariasse, W. J. (2001). Punctuated evolution of global climate cooling during the Late Middle to Early Late Miocene: High-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography, 16(4), 405–423.

Van der Woerd, J., Xu, X. W., Li, H. B., Tapponnier, P., Meyer, B., Ryerson, F. J., Meriaux, A. S., and Xu, Z. Q. (2001). Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China). J. Geophys. Res. Solid Earth, 106(B12), 30475–30504.

Verosub, K. L., Fine, P., Singer, M. J., and TenPas, J. (1993). Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21(11), 1011–1014.<1011:PAPIOT>2.3.CO;2

Wan, S. M., Kürschner, W. M., Clift, P. D., Li, A. C., and Li, T. G. (2009). Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophys. Res. Lett., 36(19), L19706.

Wang, C. S., Dai, J. G., Zhao, X. X., Li, Y. L., Graham, S. A., He, D. F., Ran, B., and Meng, J. (2014). Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621, 1–43.

Wang, X. M., Wang, B. Y., Qiu, Z. X., Xie, G. P., Xie, J. Y., Downs, W., Qiu, Z. D., and Deng, T. (2003). Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth Planet. Sci. Lett., 208(3-4), 253–269.

Wright, J. D., Miller, K. G., and Fairbanks, R. G. (1992). Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography, 7(3), 357–389.

Yamazaki, T., and Ioka, N. (1997). Environmental rock-magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene. Paleoceanography, 12(1), 111–124.

Yin, A., Rumelhart, P. E., Butler, R., Cowgill, E., Harrison, T. M., Foster, D. A., Ingersoll, R. V., Zhang, Q., Zhou, X. Q., … Raza, A. (2002). Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. GSA Bull., 114(10), 1257–1295.<1257:THOTAT>2.0.CO;2

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693.

Zachos, J. C., Dickens, G. R., and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176), 279–283.

Zan, J. B., Fang, X. M., Yan, M. D., Zhang, W. L., and Lu, Y. (2015). Lithologic and rock magnetic evidence for the Mid-Miocene Climatic Optimum recorded in the sedimentary archive of the Xining Basin, NE Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 431, 6–14.

Zan, J. B., Kang, J., Yan, M. D., Fang, X. M., Li, X. J., Guan, C., Zhang, W. L., and Fang, Y. H. (2018). A pedogenic model for the magnetic enhancement of late miocene fluvial-lacustrine sediments from the Xining Basin, NE Tibetan Plateau. J. Geophys. Res. Solid Earth, 123(8), 6176–6194.

Zhang, T., Han, W. X., Fang, X. M., Zhang, W. L., Song, C. H., and Yan, M. D. (2016). Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau. Global Planet. Change, 137, 54–68.

Zhou, L. P., Oldfield, F., Wintle, A. G., Robinson, S. G., and Wang, J. T. (1990). Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346(6286), 737–739.

Zhuang, G. S., Hourigan, J. K., Ritts, B. D., and Kent-Corson, M. L. (2011). Cenozoic multiple-phase tectonic evolution of the Northern Tibetan Plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. Am. J. Sci., 311(2), 116–152.

Zhuang, G. S., Brandon, M. T., Pagani, M., and Krishnan, S. (2014). Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet. Sci. Lett., 390, 186–198.


YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027


Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019


Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019


JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034


Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037


XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052


JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao