Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, C., Yao, H. J., Yang, Y., Luo, S., Wang, K. D., Wan, K. S., Wen, J., and Liu, B. (2020). 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications. Earth Planet. Phys., 4(3), 317–328doi: 10.26464/epp2020026

2020, 4(3): 317-328. doi: 10.26464/epp2020026

SOLID EARTH: SEISMOLOGY

3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications

1. 

School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China

Corresponding author: HuaJian Yao, hjyao@ustc.edu.cn

Received Date: 2019-08-19
Web Publishing Date: 2020-05-01

The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China. Investigations of the structures of the fault zone and its surrounding areas have attracted much attention. In this study, we used dense-array ambient noise tomography to construct a three-dimensional shear wave velocity model of shallow crust in an area about 80km × 70km in Lujiang, Anhui Province, eastern China. For approximately one month we collected continuous ambient noise signals recorded by 90 short-period seismographs in the region, and obtained the short-period Rayleigh wave empirical Green's functions between stations by the cross-correlation method; we also extracted 0.5–8 s fundamental mode Rayleigh wave group velocity and phase velocity dispersion curves. Based on the direct surface wave tomography method, we jointly inverted the group velocity and phase velocity dispersion data of all paths and obtained the 3-D shear wave velocity structure in the depth range of 0–5 km. The results revealed important geological structural features of the study area. In the north region, the sedimentary center of the Hefei Basin — the southwestern part of the Chaohu Lake — shows a significant low-velocity anomaly to a depth of at least 5 km. The southwestern and southeastern regions of the array are the eastern margin of the Dabie orogenic belt and the intrusion area of Luzong volcanic rocks, respectively, and both show obvious high-speed anomalies; the sedimentary area within the Tan-Lu fault zone (about 10 km wide) shows low-velocity anomalies. However, the volcanic rock intrusion area in the fault zone is shown as high velocity. Our shallow crustal imaging results reflect the characteristics of different structures in the study area, especially the high-speed intrusive rocks in the Tan-Lu fault zone, which were probably partially derived from the magmatic activity of Luzong volcanic basin. From the Late Cretaceous to Early Tertiary, the Tan-Lu fault zone was in a period of extensional activity; the special stress environment and the fractured fault zone morphology provided conditions for magma in the Luzong volcanic basin to intrude into the Tan-Lu fault zone in the west. Our 3-D model can also provide important information for deep resource exploration and earthquake strong ground motion simulation.

Key words: Tan-Lu fault zone, Lujiang of Anhui, ambient noise tomography, shallow crust structure, intrusive rocks

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x

Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am., 95(6), 2081–2092. https://doi.org/10.1785/0120050077

Chen, L., Zheng, T. Y., and Xu, W. W. (2007). A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J. Geophys. Res. Solid Earth, 111(B9), B09312. https://doi.org/10.1029/2005JB003974

Chen, Y., Wang, B. S., and Yao, H. J. (2017). Seismic airgun exploration of continental crust structures. Sci. China Earth Sci., 60(10), 1739–1751. https://doi.org/10.1007/s11430-016-9096-6

Dong, S. W., Gao, R., Lv, Q. T., Zhang, J. S., Zhang, R. H., Xue, H. M., Wu, C. L., Lu, Z. W., and Ma, L. C. (2009). Deep structure and ore-forming in Lujiang-Zongyang ore concentrated area. Acta Geosci. Sin. (in Chinese) , 30(3), 279–284. https://doi.org/10.3321/j.issn:1006-3021.2009.03.001

Engebretson, D. C., Cox, A., and Gordon, R. G. (1985). Relative motions between oceanic and continental plates in the Pacific basin. Special Paper 206, Boulder, Colo.: Geological Society of America, 1-59.222

Fang, H. J., and Zhang, H. J. (2014). Wavelet-based double-difference seismic tomography with sparsity regularization. Geophys. J. Int., 199(2), 944–955. https://doi.org/10.1093/gji/ggu305

Fang, H. J., Yao, H. J., Zhang, H. J., Huang, Y. C., and van der Hilst, R. D. (2015). Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application. Geophys. J. Int., 201(3), 1251–1263. https://doi.org/10.1093/gji/ggv080

Fang, L. H., Wu, J. P., Ding, Z. F., and Panza, G. F. (2010). High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise. Geophys. J. Int., 181(2), 1171–1182. https://doi.org/10.1111/j.1365-246X.2010.04571.x

Frank, S. D., Foster, A. E., Ferris, A. N., and Johnson, M. (2009). Frequency-dependent asymmetry of seismic cross-correlation functions associated with noise directionality. Bull. Seismol. Soc. Am., 99(1), 462–470. https://doi.org/10.1785/0120080023

Froment, B., Campillo, M., Roux, P., Gouédard, P., Verdel, A., and Weaver, R. L. (2010). Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics, 75(5), SA85–SA93. https://doi.org/10.1190/1.3483102

Gao, R., Lu, Z. W., Liu, J. K., Kuang, C. Y., Feng, S. Y., Li, P. W., Zhang, J. S., and Wang, H. Y. (2010). A result of interpreting from deep seismic reflection profile: Revealing fine structure of the crust and tracing deep process of the mineralization in Luzong deposit area. Acta Petrol. Sin. (in Chinese) , 26(9), 2543–2552.

Gu, N., Wang, K. D., Gao, J., Ding, N., Yao, H. J., and Zhang, H. J. (2019). Shallow crustal structure of the Tanlu fault zone near Chao Lake in eastern China by direct surface wave tomography from local dense array ambient noise analysis. Pure Appl. Geophys., 176(3), 1193–1206. https://doi.org/10.1007/s00024-018-2041-4

Gu, Q. P., Ding, Z. F., Kang, Q. Q., and Zhao, Q. G. (2016). Pn wave velocity and anisotropy in the middle-southern segment of the Tan-Lu fault zone and adjacent region. Chinese J. Geophys. (in Chinese) , 59(2), 504–515. https://doi.org/10.6038/cjg20160210

Hou, M. J., Mercier, J., Vergely, P., and Wang, Y. M. (2006). Two development stages of the Tanlu fault zone: the stages of the overthrust fault zone sensu lato and the wrench fault zone Sensu stricto. Geol. China (in Chinese) , 33(6), 1267–1275.

Hu, J., Qian, J. W., Guo, H., Wang, K. D., Zhai, Q. S., Zhang, H. J., Yao, H. J., Zhang, W., and An, M. J. (2016). Station-pair double-difference seismic tomography using Lujiang seismic network with air-gun data from the Yangtze River active source experiment in Anhui province. Earthq. Res. China (in Chinese) , 32(2), 343–355.

Huang, Y., Li, Q. H., Zhang, Y. S., Sun, Y. J., Bi, X. M., Jin, S. M., and Wang, J. (2011). Crustal velocity structure beneath the Shandong–Jiangsu–Anhui segment of the Tanchen–Lujiang Fault Zone and adjacent areas. Chinese J. Geophys. (in Chinese) , 54(10), 2549–2559. https://doi.org/10.3969/j.issn.0001-5733.2011.10.012

Li, C., Yao, H. J., Fang, H. J., Huang, X. L., Wan, K. S., Zhang, H. J., and Wang, K. D. (2016). 3D near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China. Seismol. Res. Lett., 87(4), 882–892. https://doi.org/10.1785/0220150257

Li, Z., Sun, S., Li, R. W., and Jiang, M. S. (2001). Mesozoic fill-sequences in Hefei Basin: implication for Dabie orogenesis, central China. Sci. China Ser. D Earth Sci., 44(1), 52–63. https://doi.org/10.1007/BF02906885

Liu, B., Zhu, G., Zhai, M. J., Gu, C. C., Song, L. H., and Liu, S. (2015). Features and genesis of active faults in the Anhui segment of the Tan-Lu fault zone. Chin. J. Geol. (in Chinese) , 50(2), 611–630. https://doi.org/10.3969/j.issn.0563-5020.2015.02.017

Liu, G. S., Zhu, G., Wang, D. X., Song, C. Z., and Niu, M. L. (2002). Strike-slip movement on the Zhangbaling uplift segment of the Tan-Lu fault and the depositional response in the Hefei basin. Acta Sedimentol. Sin. (in Chinese) , 20(2), 267–273. https://doi.org/10.3969/j.issn.1000-0550.2002.02.014

Liu, G. S., Zhu, G., Niu, M. L., Song, C. Z., and Wang, D. X. (2006). Meso-Cenozoic evolution of the Hefei Basin (eastern part) and its response to activities of the Tan-Lu fault zone. Chin. J. Geol. (in Chinese) , 41(2), 256–269. https://doi.org/10.3321/j.issn:0563-5020.2006.02.008

Liu, Y., Zhang, H. J., Fang, H. J., Yao, H. J., and Gao, J. (2018). Ambient noise tomography of three-dimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array. J. Appl. Geophys., 159, 209–217. https://doi.org/10.1016/j.jappgeo.2018.08.009

Liu, Z. D., Lv, Q. T., Yan, J. Y., Zhao, J. H., and Wu, M. A. (2012). Tomographic velocity structure of shallow crust and target prediction for concealed ore deposits in the Luzong basin. Chinese J. Geophys. (in Chinese) , 55(12), 3910–3922. https://doi.org/10.6038/j.issn.0001-5733.2012.12.004

Lu, G. M., Zhu, G., Li, X. T., Wang, D. X., Song, C. Z., and Liu, G. S. (2002). A relationship between the Tan-Lu faulted belt and the petroleum geology of the Hefei basin. Petrol. Geol. Exp. (in Chinese) , 24(3), 216–222. https://doi.org/10.11781/sysydz200203216

Luo, S., Yao, H. J., Li, Q. S., Wang, W. T., Wan, K. S., Meng, Y. F., and Liu, B. (2019). High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting. Sci. China Earth Sci., 62(9), 1361–1378. https://doi.org/10.1007/s11430-018-9352-9

Luo, Y. H., Xu, Y. X., and Yang, Y. J. (2012). Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth Planet. Sci. Lett., 313-314, 12–22. https://doi.org/10.1016/j.jpgl.2011.11.004

Okay, A. I., Xu, S. T., and Sengör, A. M. C. (1989). Coesite from the Dabie Shan eclogites, Central China. Eur. J. Mineral., 1(4), 595–598. https://doi.org/10.1127/ejm/1/4/0595

Ouyang, L. B., Li, H. Y., Lv, Q. T., Li, X. F., Jiang, G. M., Zhang, G. B., Shi, D. N., Zheng, D., Zhang, B., and Li, J. P. (2015). Crustal shear wave velocity structure and radial anisotropy beneath the Middle-Lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography. Chinese J. Geophys. (in Chinese) , 58(12), 4388–4402. https://doi.org/10.6038/cjg20151205

Picozzi, M., Parolai, S., Bindi, D., and Strollo, A. (2009). Characterization of shallow geology by high-frequency seismic noise tomography. Geophys. J. Int., 176(1), 164–174. https://doi.org/10.1111/j.1365-246X.2008.03966.x

Qiao, L., Yao, H. J., Lai, Y. C., Huang, B. S., and Zhang, P. (2018). Crustal structure of southwest China and Northern Vietnam from ambient noise tomography: implication for the large-scale material transport model in SE Tibet. Tectonics, 37(5), 1492–1506. https://doi.org/10.1029/2018TC004957

Rawlinson, N., and Sambridge, M. (2004). Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int., 156(3), 631–647. https://doi.org/10.1111/j.1365-246X.2004.02153.x

Shapiro, N. M., and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31(7), L07614. https://doi.org/10.1029/2004GL019491

Shapiro, N. M., Camplillo, M., Stehly, L., and Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339

She, Y. Y., Yao, H. J., Zhai, Q. S., Wang, F. Y., and Tian, X. F. (2018). Shallow crustal structure of the middle-lower Yangtze River region in eastern China from surface-wave tomography of a large volume airgun-Shot experiment. Seismol. Res. Lett., 89(3), 1003–1013. https://doi.org/10.1785/0220170232

Song, C. Z., Zhu, G., Liu, Y., Niu, M. L., and Liu, G. S. (2003). Deformation features and isotopic ages of the Feidong ductile shear belt in the Tan-Lu fault zone and its tectonic implications. Geol. Rev. (in Chinese) , 49(1), 10–16. https://doi.org/10.3321/j.issn:0371-5736.2003.01.003

Stehly, L., Campillo, M., and Shapiro, N. M. (2006). A study of the seismic noise from its long-range correlation properties. J. Geophys. Res. Solid Earth, 111(B10), B10306. https://doi.org/10.1029/2005JB004237

Tang, J. F., Lu, S. M., Li, J. S., and Wei, D. Z. (2010). The basement structural deformation, evolution and its control action on deposit distribution in Luzong volcanic basin and its adjacent area in Anhui Province, China. Acta Petrol. Sin. (in Chinese) , 26(9), 2587–2597.

Tao, S. Z., and Liu, D. L. (2000). Geothermal field characteristics of Tanlu fault zone and its neighbouring regions, thermal spring genesis and its gas composition. Nat. Gas Ind. (in Chinese) , 20(6), 42–47. https://doi.org/10.3321/j.issn:1000-0976.2000.06.011

Tian, X. F., Yang, Z. X., Wang, B. S., Yao, H. J., Wang, F. Y., Liu, B. F., Zheng, C. L., Gao, Z. Y., Xiong, W., and Deng, X. G. (2018). 3D seismic refraction travel-time tomography beneath the middle-lower Yangtze River region. Seismol. Res. Lett., 89(3), 992–1002. https://doi.org/10.1785/0220170245

Wang, J. J., Yao, H. J., Wang, W. T., Wang, B. S., Li, C., Wei, B., and Feng, L. (2018). Study of the near-surface velocity structure of the Hutubi gas storage area in Xinjiang from ambient noise tomography. Chinese J. Geophy. (in Chinese) , 61(11), 4436–4447. https://doi.org/10.6038/cjg2018M0025

Wang, X. F., Li, Z. J., and Chen, B. L. (2000). On Tan-Lu Fault Zone (pp. 15–59) (in Chinese). Beijing: Geology Press.222

Wang, Y. S., Zhu, G., Wang, D. X., Liu, G. S., and Song, C. Z. (2004). Relation between P-T conditions of two phases of Tanlu strike-slip shear zones and delamination of the orogenic belts on the eastern margin of the Dabie Mountains. Geotecton. Metallog. (in Chinese) , 28(3), 228–238. https://doi.org/10.3969/j.issn.1001-1552.2004.03.002

Wang, Y. S., Bai, Q., and Yang, B. F. (2018). Structural characteristics and geochronology of migmatites in the North Dabie Complex unit: Timing of post-collisional deformation. Sci. China Earth Sci., 61(7), 887–902. https://doi.org/10.1007/s11430-017-9189-6

Xie, C. L., Zhu, G., Niu, M. L., and Liu, X. M. (2008a). Geochemistry of Late Mesozoic volcanic rocks from the Chaohu-Lujiang segment of the Tan-Lu fault zone and lithospheric thinning processes. Acta Petrol. Sin. (in Chinese) , 24(8), 1823–1838.

Xie, C. L., Zhu, G., Niu, M. L., Wang, Y. S., Xiang, B. W., and Hu, Z. Q. (2008b). Zircon U-Pb geochronology of the Late Mesozoic volcanic rocks from the Chaohu-Lujiang segment of the Tan-Lu fault zone. Chin. J. Geol. (in Chinese) , 43(2), 294–308. https://doi.org/10.3321/j.issn:0563-5020.2008.02.006

Xu, J. W., Cui, K. R., Liu, Q., Tong, W. X., and Zhu, G. (1985). Mesozoic sinistral transcurrent faulting along the continent Margin in East Asia. Mar. Geol. Quat. Geol. (in Chinese) , 5(2), 51–64. https://doi.org/10.16562/j.cnki.0256-1492.1985.02.006

Xu, J. W., and Zhu, G. (1994). Tectonic models of the Tan-Lu fault zone, eastern China. Int. Geol. Rev., 36(8), 771–784. https://doi.org/10.1080/00206819409465487

Xu, J. W., Zhu, G., Lu, P. J., Zhen, X. X., and Sun, S. Q. (1995). Progress in studies on strike-slip chronology of the Tan-Lu fault zone. Geol. Anhui (in Chinese) , 5(1), 1–12.

Xu, S. T., Jiang, L. L., Liu, Y. C., and Zhang, Y. (1992). Tectonic framework and evolution of the Dabie Mountains in Anhui, eastern China. Acta Geol. Sin., 5(3), 221–238. https://doi.org/10.1111/j.1755-6724.1992.mp5003001.x

Yang, S. X., Zhang, J. Y., Zhang, Z. Z., and Wei, G. H. (2017). Geochemical characteristics of ore-bearing diorite porphyrite of the Nihe iron ore deposit in Lujing, Anhui Province. East China Geol. (in Chinese) , 38(4), 241–249. https://doi.org/10.16788/j.hddz.32-1865/P.2017.04.001

Yang, Y. J., and Ritzwoller, M. H. (2008). Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem. Geophys. Geosyst., 9(2), Q02008. https://doi.org/10.1029/2007GC001814

Yao, H. J., van der Hilst, R. D., and de Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophys. J. Int., 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x

Yao, H. J., Beghein, C., and van der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-II. Crustal and upper-mantle structure. Geophys. J. Int., 173(1), 205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x

Yao, H. J., and van der Hilst, R. D. (2009). Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys, J. Int., 179(2), 1113–1132. https://doi.org/10.1111/j.1365-246X.2009.04329.x

Yao, H. J., Gouédard, P., Collins, J. A., McGuire, J. J., and van der Hilst, R. D. (2011). Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves. C. R. Geosci., 343(8-9), 571–583. https://doi.org/10.1016/j.crte.2011.04.004

Yuan, F., Zhou, T. F., Fan, Y., Lu, S. M., Qian, C. C., Zhang, L. J., Duan, C., and Tang, M. H. (2008). Source, evolution and tectonic setting of Mesozoic volcanic rocks in Luzong basin, Anhui Province. Acta Petrol. Sin. (in Chinese) , 24(8), 1691–1702.

Zhang, D. B., Guo, K. Y., and Dong, M. X. (1995). Geological features of Zhangbaling Group and its division. Volcanol. Min. Resour. (in Chinese) , 16(4), 1–16.

Zhang, J. D., Yang, C. C., Liu, C. Z., Liu, D. L., Yang, X. Y., Liu, C. P., Huang, S., and Ren, F. L. (2010). The deep structures of strike-slip and extension faults and their composite relationship in the southern segment of Tanlu fault zone. Chinese J. Geophys. (in Chinese) , 53(4), 864–873. https://doi.org/10.3969/j.issn.0001-5733.2010.04.011

Zhang, Y. Y., Yao, H. J., Yang, H. Y., Cai, H. T., Fang, H. J., Xu, J. J., Jin, X., Chen, H. K., Liang, W. T., and Chen, K. X. (2018). 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, Revealed by Ambient Noise Tomography. J. Geophys. Res. Solid Earth, 123(9), 8016–8031. https://doi.org/10.1029/2018JB015938

Zhao, T., Zhu, G., Lin, S. Z., Yan, L. J., and Jiang, Q. Q. (2014). Protolith ages and deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone. Sci. China: Earth Sci., 57(11), 2740–2757. https://doi.org/10.1007/s11430-014-4959-4

Zhao, T., Zhu, G., Lin, S. Z., and Wang, H. Q. (2016). Indentation-induced tearing of a subducting continent: Evidence from the Tan-Lu Fault Zone, East China. Earth Sci. Rev., 152, 14–36. https://doi.org/10.1016/j.earscirev.2015.11.003

Zheng, Y. F., Fu, B., Gong, B., and Li, L. (2003). Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Sci. Rev., 62(1-5), 105–161. https://doi.org/10.1016/S0012-8252(02)00133-2

Zhou, T. F., Fan, Y., Yuan, F., Lu, S. M., Shang, S. G., Cook, D., Meffre, S., and Zhao, G. C. (2008). Geochronology of the volcanic rocks in the Lu-Zong Basin and its significance. Sci. China Ser. D: Earth Sci. (in Chinese) , 51(10), 1470–1482. https://doi.org/10.1007/s11430-008-0111-7

Zhu, G., Xu, J. W., and Sun, S. Q. (1995). Isotopic age evidence for the timing of strike-slip movement of the Tan-Lu Fault Zone. Geol. Rev. (in Chinese) , 41(5), 452–456. https://doi.org/10.16509/j.georeview.1995.05.009

Zhu, G., Wang, D. X., Liu, G. S., Song, C. Z., Xu, J. W., and Niu, M. L. (2001). Extensional activities along the Tan-Lu Fault Zone and its Geodynamic setting. Chin. J. Geol. (in Chinese) , 36(3), 269–278. https://doi.org/10.3321/j.issn:0563-5020.2001.03.002

Zhu, G., Wang, D. X., Liu, G. S., Niu, M. L., and Song, C. Z. (2004). Evolution of the Tan-Lu Fault Zone and its responses to plate movements in west Pacific basin. Chin. J. Geol. (in Chinese) , 39(1), 36–49. https://doi.org/10.3321/j.issn:0563-5020.2004.01.005

[1]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[2]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[3]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[4]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[5]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[6]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[7]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[8]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[9]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[10]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[11]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[12]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[13]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[14]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[15]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[16]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[17]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[18]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu