Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Wang, Y. M., Jia, X. Z., Wang, C. B., Wang, S., and Krupar, V. (2020). Locating the source field lines of Jovian decametric radio emissions. Earth Planet. Phys., 4(2), 95–104.

2020, 4(2): 95-104. doi: 10.26464/epp2020015


Locating the source field lines of Jovian decametric radio emissions


Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China


Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China


Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China,  Hefei 230026, China


Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109-2143, USA


Universities Space Research Association, Columbia, Maryland, USA


NASA Goddard Space Flight Center, Greenbelt, Maryland, USA


Department of Space Physics, Institute of Atmospheric Physics, The Czech Academy of Sciences, Prague, Czech Republic

Corresponding author: YuMing Wang,

Received Date: 2019-08-19
Web Publishing Date: 2020-02-28

Decametric (DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io (the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al. (2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g., Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09 (Connerney et al., 2018). By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.

Key words: radio decametric emissions, Jovian magnetosphere, energetic electrons

Bagenal, F. (1994). Empirical model of the Io plasma torus: Voyager measurements. J. Geophys. Res.: Space Phys., 99(A6), 11043–11062.

Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., … Thorpe, R. (2017). The Juno mission. Space Sci. Rev., 213(1-4), 5–37.

Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Saur, J., and Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity?. Geophys. Res. Lett., 35(5), L05107.

Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., and Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. J. Geophys. Res.: Space Phys., 114(A7), A07224.

Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., … Hoang, S. S. (1995). WAVEs: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev., 71(1-4), 231–263.

Bougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., … Zouganelis, I. (2008). S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev., 136(1-4), 487–528.

Carr, T. D., Desch, M. D., and Alexander, J. K. (1983). Phenomenology of magnetospheric radio emissions. In A. J. Dessler (Ed.), Physics of Jovian Magnetosphere (pp. 226–284). New York: Cambridge University Press.

Connerney, J. E. P. (1992). Doing more with Jupiter's magnetic field. In H. O. Rucker, et al. (Eds.), Planetary Radio Emissions III (pp. 13–33). Vienna: Austrian Academy of Science.

Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res.: Space Phys., 86(A10), 8370–8384.

Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., …Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophys. Res. Lett., 45(6), 2590–2596.

Cowley, S. W. H., and Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planet. Space Sci., 49(10-11), 1067–1088.

Dulk, G. A., Leblanc, Y., and Lecacheux, A. (1994). The complete polarization state of Io-related radio storms from Jupiter: A statistical study. Astron. Astrophys., 286, 683–700.

Giampieri, G., and Dougherty, M. K. (2004). Modelling of the ring current in Saturn’s magnetosphere. Ann. Geophys., 22(2), 653–659.

Grodent, D., Bonfond, B., Gérard, J. C., Radioti, A., Gustin, J., Clarke, J. T., Nichols, J., and Connerney, J. E. P. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere. J. Geophys. Res.: Space Phys., 113(A9), A09201.

Hess, S., Zarka, P., and Mottez, F. (2007). Io-Jupiter interaction, millisecond bursts and field-aligned potentials. Planet. Space Sci., 55(1–2), 89–99.

Hess, S., Cecconi, B., and Zarka, P. (2008). Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett., 35(13), L13107.

Hess, S. L. G., Pétin, A., Zarka, P., Bonfond, B., and Cecconi, B. (2010). Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci., 58(10), 1188–1198.

Hess, S. L. G., Echer, E., Zarka, P., Lamy, L., and Delamere, P. A. (2014). Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planet. Space Sci., 99, 136–148.

Hill, T. W., Dessler, A. J., and Goertz, C. K. (1983). Magnetospheric models. In A. J. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 353–394). Cambridge: Cambridge University Press.

Imai, K., Wang, L. Y., and Can, T. D. (1997). Modeling Jupiter's decametric modulation lanes. J. Geophys. Res.: Space Phys., 102(A4), 7127–7136.

Imai, K., Riihimaa, J. J., Reyes, F., and Carr, T. D. (2002). Measurement of Jupiter’s decametric radio source parameters by the modulation lane method. J. Geophys. Res.: Space Phys., 107(A6), SMP 12-1–SMP 12-11.

Jacobsen, S., Neubauer, F. M., Saur, J., and Schilling, N. (2007). Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophys. Res. Lett., 34(10), L10202.

Kaiser, M. L., Zarka, P., Kurth, W. S., Hospodarsky, G. B., and Gurnett, D. A. (2000). Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: Measurement of beam widths. J. Geophys. Res.: Space Phys., 105(A7), 16053–16062.

Kivelson, M. G., and Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere. J. Geophys. Res.: Space Phys., 110(A12), A12209.

Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., and Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal et al. (Ed.), Jupiter: The Planet, Satellites and Magnetosphere (pp. 513–536). Cambridge: Cambridge University Press.

Lamy, L., Zarka, P., Cecconi, B., Hess, S., and Prangé, R. (2008). Modeling of Saturn kilometric radiation arcs and equatorial shadow zone. J. Geophys. Res.: Space Phys., 113(A10), A10213.

Lamy, L., Prangé, R., Pryor, W., Gustin, J., Badman, S. V., Melin, H., Stallard, T., Mitchell, D. G., and Brandt, P. C. (2013). Multispectral simultaneous diagnosis of Saturn's aurorae throughout a planetary rotation. J. Geophys. Res.: Space Phys., 118(8), 4817–4843.

Lecacheux, A. (1988). Polarization aspects from planetary radio emissions. In H. O. Rucker, et al. (Eds.), Planetary Radio Emissions II (pp. 311–326). Vienna: Austrian Academy of Science.

Panchenko, M., and Rucker, H. O. (2016). Estimation of emission cone wall thickness of Jupiter's decametric radio emission using stereoscopic STEREO/WAVES observations. Astron. Astrophys., 596, A18.

Queinnec, J., and Zarka, P. (1998). Io-controlled decameter arcs and Io-Jupiter interaction. J. Geophys. Res.: Space Phys., 103(A11), 26649–26666.

Ramachandran, P., and Varoquaux, G. (2011). Mayavi: 3D visualization of scientific data. Comput. Sci. Eng., 13(2), 40–51.

Riihimaa, J. J. (1968). Structured events in the dynamic spectra of Jupiter’s decametric radio emission. Astron. J., 73, 265–270.

Riihimaa, J. J. (1978). L-bursts in Jupiter’s decametric radio spectra. Astrophys. Space Sci., 56(2), 503–518.

Saur, J., Neubauer, F. M., Strobel, D. F., and Summers, M. E. (1999). Three-dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow. J. Geophys. Res.: Space Phys., 104(A11), 25105–25126.

Schneider, N. M., and Bagenal, F. (2007). Io's neutral clouds, plasma torus, magnetospheric interactions. In R. M. C. Lopes, et al. (Eds.), Io after Galileo (pp. 265–286). Berlin, Heidelberg: Springer.

Treumann, R. A. (2006). The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev., 13(4), 229–315.

Waite, J. H. Jr., Clarke, J. T., Cravens, T. E., and Hammond, C. M. (1988). The Jovian aurora: Electron or ion precipitation?. J. Geophys. Res.: Space Phys., 93(A7), 7244–7250.

Wu, C. S., and Lee, L. C. (1979). A theory of terrestrial kilometric radiation. Astrophys. J., 230, 621–626.

Zarka, P. (1998). Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res.: Plants, 103(E9), 20159–20194.

Zarka, P., Farges, T., Ryabov, B. P., Abada-Simon, M., and Denis, L. (1996). A scenario for Jovian S-bursts. Geophys. Res. Lett., 23(2), 125–128.


YuMing Wang, RuoBing Zheng, XianZhe Jia, ChuanBing Wang, Shui Wang, V. Krupar, 2022: Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”, Earth and Planetary Physics, 6, 13-17. doi: 10.26464/epp2022019


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


Laurent Lamy, Baptiste Cecconi, Stéphane Aicardi, C. K. Louis, 2022: Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al., Earth and Planetary Physics, 6, 10-12. doi: 10.26464/epp2022018


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055


JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002


YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032


QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036


Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047


Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003


Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048


Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Locating the source field lines of Jovian decametric radio emissions

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar