Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Han, Q. Q., Fraenz, M., Wei, Y., Dubinin, E., Cui, J. Chai, L. H., Rong, Z. J., Wan, W. X., and Futaana, Y. (2020). EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations. Earth Planet. Phys., 4(1), 73–81.doi: 10.26464/epp2020011

2020, 4(1): 73-81. doi: 10.26464/epp2020011


EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100049, China


College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


Max-Planck-Institute for Solar System Research, Goettingen, DE 37077, Germany


Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China


School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China


Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China


Swedish Institute of Space Physics, Kiruna, SE 98128, Sweden

Corresponding author: Yong Wei,

Received Date: 2019-09-20
Web Publishing Date: 2020-01-01

The Venusian dayside ionosphere, similar to other planetary ionospheres, is produced primarily by ionization of its neutral upper atmosphere due to solar extreme ultraviolet (EUV) radiation. It has become clear that the expansion of the ionosphere may be strongly controlled by the EUV level, as exhibited in data collected by the Pioneer Venus Orbiter (PVO) during one solar cycle (1978–1992). However, the EUV-dependence of the Venusian dayside ionopause altitude, which defines the outer boundary of the ionosphere, remains obscure because the PVO crossed the dayside ionopause only during the solar maximum; its periapsis lifted too high during the solar minimum. Recently, during the period 2006–2014, which included the longest and quietest solar minimum of the past several decades, Venus Express (VEX) provided measurements of the photoelectron boundary (PEB) over the northern high-latitude region. Since the photoelectron boundary is closely related to the ionopause, we have an opportunity to analyze the EUV effect on the dayside ionopause by combining PVO and VEX observations. We have evaluated and then reduced the orbit bias effect in data from both PVO and VEX, and then used the results to derive a relationship between solar EUV level and the dayside ionopause altitude. We find that the dayside ionopause altitude increases as the solar EUV level increases, which is consistent with theoretical expectations.

Key words: Venus, ionopause, ionosphere, solar activity

Angsmann, A., Fränz, M., Dubinin, E., Woch, J., Barabash, S., Zhang, T. L., and Motschmann, U. (2011). Magnetic states of the ionosphere of Venus observed by Venus Express. Planet. Space Sci., 59(4), 327–337.

Barabash, S., Sauvaud, J. A., Gunell, H., Andersson, H., Grigoriev, A., Brinkfeldt, K., Holmström, M., Lundin, R., Yamauchi, M., … Bochsler, P. (2007). The analyser of space plasmas and energetic atoms (ASPERA-4) for the venus express mission. Planet. Space Sci., 55(12), 1772–1792.

Brace, L. H., Theis, R. F., Hoegy, W. R., Wolfe, J. H., Mihalov, J. D., Russell, C. T., Elphic, R. C., and Nagy, A. F. (1980). The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res., 85(A13), 7663–7678.

Brace, L. H., Hoegy, W. R., and Theis, R. F. (1988). Solar EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir Probe. J. Geophys. Res., 93(A7), 7282–7296.

Brace, L. H., and Kliore, A. J. (1991). The structure of the Venus ionosphere. Space Sci. Rev., 55(1-4), 81–163.

Coates, A. J., Frahm, R. A., Linder, D. R., Kataria, D. O., Soobiah, Y., Collinson, G., Sharber, J, R., Winningham, J. D., Jeffers, S. J., … Grande, M. (2008). Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planet. Space Sci., 56(6), 802–806.

Edberg, N. J. T., Brain, D. A., Lester, M., Cowley, S. W. H., Modolo, R., Fränz, M., and Barabash, S. (2009). Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys., 27(9), 3537–3550.

Fox, J. L., and Kliore, A. J. (1997). Ionosphere: solar cycle variations. In S. W. Bougher, et al. (Eds.), Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson, AZ : University of Arizona Press.222

Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res., 124(10), 8015–8022.

Han, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., … Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophys. Res. Lett., 41(23), 8221–8227.

Krehbiel J. P., Brace, L. H., Theis, R. F., Cutler, J. R., Pinkus, W. H., and Kaplan, R. B. (1980). Pioneer Venus Orbiter electron temperature probe. IEEE Trans. Geosci. Remote Sens, GE-18(1), 49–54.

Luhmann, J. G. (1986). The solar wind interaction with Venus. Space Sci. Rev., 44(3-4), 241–306.

Luhmann, J. G., and Cravens, T. E., (1991). Magnetic fields in the ionosphere of Venus. Space Sci. Rev., 55(1-4), 201–274.

Mahajan, K. K., Mayr, H. G., Brace, L. H., and Cloutier, P. A. (1989). On the lower altitude limit of the Venusian ionopause. Geophys. Res. Lett., 16(7), 759–762.

Mahajan, K. K., and Mayr, H. G. (1989). Venus Ionopause during solar miminum. Geophys. Res. Lett., 16(12), 1477–1480.

Martinecz, C., Fränz, M., Woch, J., Krupp, N., Roussos, E., Dubinin, E., Motschmann, U., Barabash, S., Lundin, R., … Lammer, H. (2008). Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4. Planet. Space Sci., 56(6), 780–784.

Martinecz, C., Boesswetter, A., Fränz, M., Roussos, E., Woch, J., Krupp, N., Dubinin, E., Motschmann, U., Wiehle, S., … Kulikov, Y. (2009). Plasma environment of Venus: comparison of Venus Express ASPERA-4 measurements with 3-D hybrid simulations. J. Geophys. Res., 114(E9), E00B30.

Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res., 106(E10), 23419–23427.

Phillips, J. L., Luhmann, J. G., Knudsen, W. C., and Brace, L. H. (1988). Asymmetries in the location of the Venus Ionopause. J. Geophys. Res., 93(A5), 3927–3941.

Russell, C. T., Zhang, T. L., and Luhmann, J. G. (1993). On the cause of distant bow shock encounters. In T. I. Gombosi (Ed.), Plasma Environments of Non-Magnetic Planets (pp. 241-246). Oxford: Pergamon.222

Sánchez-Cano, B., Lester, M., Witasse, O., Milan, S. E., Hall, B. E. S., Blelly, P. L., Radicella, S. M., and Morgan, D. D. (2015). Evidence of scale height variations in the Martian ionosphere over the solar cycle. J. Geophys. Res., 120(12), 10913–10925.

Vech, D., Szego, K., Opitz, A., Kajdic, P., Fraenz, M., Kallio, E., and Alho, M. (2015). Space weather effects on the bow shock, the magnetic barrier, and the ion composition boundary at Venus. J. Geophys. Res., 120(6), 4613–4627.

Wei, Y., Fraenz, M., Dubinin, E., Coates, A. J., Zhang, T. L., Wan, W., Feng, L., Angsmann, A., Opitz, A., … Lundin, R. (2012). A teardrop-shaped ionosphere at Venus in tenuous solar wind. Planet. Space Sci., 73(1), 254–261.


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035


Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009


XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063


GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002


JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027


LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028


SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012


YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010


Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012


Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011


HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032


ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064


Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012


LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012


JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana