Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Han, Q. Q., Fraenz, M., Wei, Y., Dubinin, E., Cui, J. Chai, L. H., Rong, Z. J., Wan, W. X., and Futaana, Y. (2020). EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations. Earth Planet. Phys., 4(1), 73–81.doi: 10.26464/epp2020011

2020, 4(1): 73-81. doi: 10.26464/epp2020011

PLANETARY SCIENCES

EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100049, China

3. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

4. 

Max-Planck-Institute for Solar System Research, Goettingen, DE 37077, Germany

5. 

Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

6. 

School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

7. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

8. 

Swedish Institute of Space Physics, Kiruna, SE 98128, Sweden

Corresponding author: Yong Wei, weiy@mail.iggcas.ac.cn

Received Date: 2019-09-20
Web Publishing Date: 2020-01-01

The Venusian dayside ionosphere, similar to other planetary ionospheres, is produced primarily by ionization of its neutral upper atmosphere due to solar extreme ultraviolet (EUV) radiation. It has become clear that the expansion of the ionosphere may be strongly controlled by the EUV level, as exhibited in data collected by the Pioneer Venus Orbiter (PVO) during one solar cycle (1978–1992). However, the EUV-dependence of the Venusian dayside ionopause altitude, which defines the outer boundary of the ionosphere, remains obscure because the PVO crossed the dayside ionopause only during the solar maximum; its periapsis lifted too high during the solar minimum. Recently, during the period 2006–2014, which included the longest and quietest solar minimum of the past several decades, Venus Express (VEX) provided measurements of the photoelectron boundary (PEB) over the northern high-latitude region. Since the photoelectron boundary is closely related to the ionopause, we have an opportunity to analyze the EUV effect on the dayside ionopause by combining PVO and VEX observations. We have evaluated and then reduced the orbit bias effect in data from both PVO and VEX, and then used the results to derive a relationship between solar EUV level and the dayside ionopause altitude. We find that the dayside ionopause altitude increases as the solar EUV level increases, which is consistent with theoretical expectations.

Key words: Venus, ionopause, ionosphere, solar activity

Angsmann, A., Fränz, M., Dubinin, E., Woch, J., Barabash, S., Zhang, T. L., and Motschmann, U. (2011). Magnetic states of the ionosphere of Venus observed by Venus Express. Planet. Space Sci., 59(4), 327–337. https://doi.org/10.1016/j.pss.2010.12.004

Barabash, S., Sauvaud, J. A., Gunell, H., Andersson, H., Grigoriev, A., Brinkfeldt, K., Holmström, M., Lundin, R., Yamauchi, M., … Bochsler, P. (2007). The analyser of space plasmas and energetic atoms (ASPERA-4) for the venus express mission. Planet. Space Sci., 55(12), 1772–1792. https://doi.org/10.1016/j.pss.2007.01.014

Brace, L. H., Theis, R. F., Hoegy, W. R., Wolfe, J. H., Mihalov, J. D., Russell, C. T., Elphic, R. C., and Nagy, A. F. (1980). The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res., 85(A13), 7663–7678. https://doi.org/10.1029/JA085iA13p07663

Brace, L. H., Hoegy, W. R., and Theis, R. F. (1988). Solar EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir Probe. J. Geophys. Res., 93(A7), 7282–7296. https://doi.org/10.1029/JA093iA07p07282

Brace, L. H., and Kliore, A. J. (1991). The structure of the Venus ionosphere. Space Sci. Rev., 55(1-4), 81–163. https://doi.org/10.1007/BF00177136

Coates, A. J., Frahm, R. A., Linder, D. R., Kataria, D. O., Soobiah, Y., Collinson, G., Sharber, J, R., Winningham, J. D., Jeffers, S. J., … Grande, M. (2008). Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planet. Space Sci., 56(6), 802–806. https://doi.org/10.1016/j.pss.2007.12.008

Edberg, N. J. T., Brain, D. A., Lester, M., Cowley, S. W. H., Modolo, R., Fränz, M., and Barabash, S. (2009). Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys., 27(9), 3537–3550. https://doi.org/10.5194/angeo-27-3537-2009

Fox, J. L., and Kliore, A. J. (1997). Ionosphere: solar cycle variations. In S. W. Bougher, et al. (Eds.), Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson, AZ : University of Arizona Press.222

Han, Q. Q., Fan, K., Cui, J., Wei, Y., Fraenz, M., Dubinin, E., Chai, L. H., Rong, Z. J., Wan, W. X., … Connerney, J. E. P. (2019). The relationship between photoelectron boundary and steep electron density gradient on Mars: MAVEN observations. J. Geophys. Res., 124(10), 8015–8022. https://doi.org/10.1029/2019JA026739

Han, X., Fraenz, M., Dubinin, E., Wei, Y., Andrews, D. J., Wan, W., He, M., Rong, Z. J., Chai, L., … Barabash, S. (2014). Discrepancy between ionopause and photoelectron boundary determined from Mars Express measurements. Geophys. Res. Lett., 41(23), 8221–8227. https://doi.org/10.1002/2014GL062287

Krehbiel J. P., Brace, L. H., Theis, R. F., Cutler, J. R., Pinkus, W. H., and Kaplan, R. B. (1980). Pioneer Venus Orbiter electron temperature probe. IEEE Trans. Geosci. Remote Sens, GE-18(1), 49–54. https://doi.org/10.1109/TGRS.1980.350260

Luhmann, J. G. (1986). The solar wind interaction with Venus. Space Sci. Rev., 44(3-4), 241–306. https://doi.org/10.1007/BF00200818

Luhmann, J. G., and Cravens, T. E., (1991). Magnetic fields in the ionosphere of Venus. Space Sci. Rev., 55(1-4), 201–274. https://doi.org/10.1007/BF00177138

Mahajan, K. K., Mayr, H. G., Brace, L. H., and Cloutier, P. A. (1989). On the lower altitude limit of the Venusian ionopause. Geophys. Res. Lett., 16(7), 759–762. https://doi.org/10.1029/GL016i007p00759

Mahajan, K. K., and Mayr, H. G. (1989). Venus Ionopause during solar miminum. Geophys. Res. Lett., 16(12), 1477–1480. https://doi.org/10.1029/GL016i012p01477

Martinecz, C., Fränz, M., Woch, J., Krupp, N., Roussos, E., Dubinin, E., Motschmann, U., Barabash, S., Lundin, R., … Lammer, H. (2008). Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4. Planet. Space Sci., 56(6), 780–784. https://doi.org/10.1016/j.pss.2007.07.007

Martinecz, C., Boesswetter, A., Fränz, M., Roussos, E., Woch, J., Krupp, N., Dubinin, E., Motschmann, U., Wiehle, S., … Kulikov, Y. (2009). Plasma environment of Venus: comparison of Venus Express ASPERA-4 measurements with 3-D hybrid simulations. J. Geophys. Res., 114(E9), E00B30. https://doi.org/10.1029/2008JE003174

Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (2001). Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res., 106(E10), 23419–23427. https://doi.org/10.1029/2000JE001435

Phillips, J. L., Luhmann, J. G., Knudsen, W. C., and Brace, L. H. (1988). Asymmetries in the location of the Venus Ionopause. J. Geophys. Res., 93(A5), 3927–3941. https://doi.org/10.1029/JA093iA05p03927

Russell, C. T., Zhang, T. L., and Luhmann, J. G. (1993). On the cause of distant bow shock encounters. In T. I. Gombosi (Ed.), Plasma Environments of Non-Magnetic Planets (pp. 241-246). Oxford: Pergamon.222

Sánchez-Cano, B., Lester, M., Witasse, O., Milan, S. E., Hall, B. E. S., Blelly, P. L., Radicella, S. M., and Morgan, D. D. (2015). Evidence of scale height variations in the Martian ionosphere over the solar cycle. J. Geophys. Res., 120(12), 10913–10925. https://doi.org/10.1002/2015JA021949

Vech, D., Szego, K., Opitz, A., Kajdic, P., Fraenz, M., Kallio, E., and Alho, M. (2015). Space weather effects on the bow shock, the magnetic barrier, and the ion composition boundary at Venus. J. Geophys. Res., 120(6), 4613–4627. https://doi.org/10.1002/2014JA020782

Wei, Y., Fraenz, M., Dubinin, E., Coates, A. J., Zhang, T. L., Wan, W., Feng, L., Angsmann, A., Opitz, A., … Lundin, R. (2012). A teardrop-shaped ionosphere at Venus in tenuous solar wind. Planet. Space Sci., 73(1), 254–261. https://doi.org/10.1016/j.pss.2012.08.024

[1]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[2]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[3]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[4]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[5]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[6]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[7]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[8]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[9]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[10]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[11]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[12]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana