Citation:
Cao, Y. T., Cui, J., Wu, X. S., and Zhong, J. H. (2020). Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity. Earth Planet. Phys., 4(1), 17–22.. http://doi.org/10.26464/epp2020008
2020, 4(1): 17-22. doi: 10.26464/epp2020008
Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity
1. | Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
2. | School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
3. | School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China |
4. | Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China |
The photoelectron peak at 22–27 eV, a distinctive feature of the energetic electron distribution in the dayside Martian ionosphere, is a useful diagnostic of solar extreme ultraviolet (EUV) and X-ray ionization as well as of large-scale transport along magnetic field lines. In this work, we analyze the pitch angle distribution (PAD) of energetic electrons at 22–27 eV measured during several representative Mars Atmosphere and Volatile Evolution (MAVEN) orbits, based on the electron spectra gathered by MAVEN’s Solar Wind Electron Analyzer (SWEA) instrument. On the dayside, most photoelectron spectra show an isotropic PAD as is expected from production via solar EUV/X-ray ionization. The photoelectron spectra occasionally observed on the nightside show instead a strongly anisotropic PAD, indicative of cross-terminator transport along ambient magnetic field lines. This would in turn predict the presence of dayside photoelectrons, also with a strongly anisotropic PAD, which was indeed revealed in SWEA data. Comparison with magnetic field measurements made by the MAVEN Magnetometer suggests that on average the photoelectrons with anisotropic PAD stream away from Mars on the dayside and towards Mars on the nightside, further supporting the scenario of day-to-night transport. On both sides, anisotropic photoelectrons tend to be observed above the photoelectron exobase at ~160 km where photoelectron transport dominates over local production and energy degradation.
Cao, Y. T., Cui, J., Wu, X. S., Guo, J. P., and Wei, Y. (2019). Structural variability of the Nightside Martian ionosphere near the terminator: Implications on plasma sources. J. Geophys. Res. Planets, 124(6), 1495–1511. https://doi.org/10.1029/2019JE005970 |
Coates, A. J., Tsang, S. M. E., Wellbrock, A., Frahm, R. A., Winningham, J. D., Barabash, S., Lundin, R., Young, D. T., and Crary, F. J. (2011). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planet. Space Sci., 59(10), 1019–1027. https://doi.org/10.1016/j.pss.2010.07.016 |
Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291. https://doi.org/10.1007/s11214-015-0169-4 |
Cui, J., Galand, M., Yelle, R. V., Vuitton, V., Wahlund, J. E., Lavvas, P. P., Müller-Wodarg, I. C. F., Cravens, T. E., Kasprzak, W. T., and Waite, Jr. J. H. (2009). Diurnal variations of Titan’s ionosphere. J. Geophys. Res. Space Phys., 114(A6), A06310. https://doi.org/10.1029/2009JA014228 |
Cui, J., Galand, M., Yelle, R. V., Wahlund, J. E., Ågren, K., Waite, Jr. J. H., and Dougherty, M. K. (2010). Ion transport in Titan’s upper atmosphere. J. Geophys. Res. Space Phys., 115(A6), A06314. https://doi.org/10.1029/2009JA014563 |
Cui, J., Galand, M., Yelle, R. V., Wei, Y., and Zhang, S. J. (2015). Day-to-night transport in the Martian ionosphere: Implications from total electron content measurements. J. Geophys. Res. Space Phys., 120(3), 2333–2346. https://doi.org/10.1002/2014JA020788 |
Cui, J., Cao, Y. T., Wu, X. S., Xu, S. S., Yelle, R. V., Stone, S., Vigren, E., Edberg, N. J. T., Shen, C. L., … Wei, Y. (2019). Evaluating local ionization balance in the Nightside Martian upper atmosphere during MAVEN deep dip campaigns. Astrophys. J. Lett., 876(1), L12. https://doi.org/10.3847/2041-8213/ab1b34 |
Duru, F., Gurnett, D. A., Morgan, D. D., Winningham, J. D., Frahm, R. A., and Nagy, A. F. (2011). Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions. J. Geophys. Res. Space Phys., 116(A10), A10316. https://doi.org/10.1029/2011JA016835 |
Fowler, C. M., Andersson, L., Ergun, R. E., Morooka, M., Delory, G., Andrews, D. J., Lillis, R. J., McEnulty, T., Weber, T. D., … Jakosky, B. M. (2015). The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett., 42(21), 8854–8861. https://doi.org/10.1002/2015GL065267 |
Fox, J. L., Brannon, J. F., and Porter, H. S. (1993). Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett., 20(13), 1339–1342. https://doi.org/10.1029/93GL01349 |
Frahm, R. A., Winningham, J. D., Sharber, J. R., Scherrer, J. R., Jeffers, S. J., Coates, A. J., Linder, D. R., Kataria, D. O., Lundin, R., … Dierker, C. (2006). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182(2), 371–382. https://doi.org/10.1016/j.icarus.2006.01.014 |
Knudsen, W. C., Spenner, K., Miller, K. L., and Novak, V. (1980). Transport of ionospheric O+ ions across the Venus terminator and implications. J. Geophys. Res. Space Phys., 85(A13), 7803–7810. https://doi.org/10.1029/JA085iA13p07803 |
Knudsen, W. C., and Miller, K. L. (1992). The Venus transterminator ion flux at solar maximum. J. Geophys. Res. Space Phys., 97(A11), 17165–17167. https://doi.org/10.1029/92JA01460 |
Lillis, R. J., Fillingim, M. O., Peticolas, L. M., Brain, D. A., Lin, R. P., and Bougher, S. W. (2009). Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization. J. Geophys. Res. Planets, 114(E11), E11009. https://doi.org/10.1029/2009JE003379 |
Lillis, R. J., Fillingim, M. O., and Brain, D. A. (2011). Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons. J. Geophys. Res. Space Phys., 116(A12), A12317. https://doi.org/10.1029/2011JA016982 |
Lillis, R. J., and Brain, D. A. (2013). Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions. J. Geophys. Res. Space Phys., 118(6), 3546–3556. https://doi.org/10.1002/jgra.50171 |
Lillis, R. J., Mitchell, D. L., Steckiewicz, M., Brain, D., Xu, S. S., Weber, T., Halekas, J., Connerney, J., Espley, J., … Eparvier, F. (2018). Ionizing electrons on the Martian Nightside: structure and variability. J. Geophys. Res. Space Phys., 123(5), 4349–4363. https://doi.org/10.1029/2017JA025151 |
Mantas, G. P., and Hanson, W. B. (1979). Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res. Space Phys., 84(A2), 369–385. https://doi.org/10.1029/JA084iA02p00369 |
Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1-4), 495–528. https://doi.org/10.1007/s11214-015-0232-1 |
Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010). Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res. Planets, 115(E12), E12009. https://doi.org/10.1029/2010JE003663 |
Peterson, W. K., Thiemann, E., M. B., Eparvier, F. G., Andersson, L., Fowler, C. M., Larson, D., Mitchell, D., Mazelle, C., Fontenla, J., … Jakosky, B. (2016). Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. J. Geophys. Res. Space Phys., 121(9), 8859–8870. https://doi.org/10.1002/2016JA022677 |
Sakai, S., Rahmati, A., Mitchell, D. L., Cravens, T. E., Bougher, S. W., Mazelle, C., Peterson, W. K., Eparvier, F. G., Fontenla, J. M., and Jakosky, B. M. (2015). Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophys. Res. Lett., 42(21), 8894–8900. https://doi.org/10.1002/2015GL065169 |
Spenner, K., Knudsen, W. C., Whitten, R. C., Michelson, P. F., Miller, K. L., and Novak, V. (1981). On the maintenance of the Venus nightside ionosphere: Electron precipitation and plasma transport. J. Geophys. Res. Space Phys., 86(A11), 9170–9178. https://doi.org/10.1029/JA086iA11p09170 |
Steckiewicz, M., Mazelle, C., Garnier, P., André, N., Penou, E., Beth, A., Sauvaud, J. A., Toublanc, D., Mitchell, D. L., … Jakosky, B. M. (2015). Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophys. Res. Lett., 42(21), 8877–8884. https://doi.org/10.1002/2015GL065257 |
Steckiewicz, M., Garnier, P., André, N., Mitchell, D. L., Andersson, L., Penou, E., Beth, A., Fedorov, A., Sauvaud, J. A., … Jakosky, B. M. (2017). Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and volatile evolution mission observations. J. Geophys. Res. Space Phys., 122(1), 857–873. https://doi.org/10.1002/2016JA023205 |
Verigin, M. I., Gringauz, K. I., Shutte, N. M., Haider, S. A., Szego, K., Kiraly, P., Nagy, A. F., and Gombosi, T. I. (1991). On the possible source of the ionization in the nighttime Martian ionosphere: 1. Phobos 2 Harp electron spectrometer measurements. J. Geophys. Res. Space Phys., 96(A11), 19307–19313. https://doi.org/10.1029/91JA00924 |
Weber, T., Brain, D., Mitchell, D., Xu, S. S., Connerney, J., and Halekas, J. (2017). Characterization of low-altitude nightside Martian magnetic topology using electron pitch angle distributions. J. Geophys. Res. Space Phys., 122(10), 9777–9789. https://doi.org/10.1002/2017JA024491 |
Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027 |
Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. Space Phys., 117(A12), A12307. https://doi.org/10.1029/2012JA018185 |
Wu, X. S., Cui, J., Yu, J., Liu, L. J., and Zhou, Z. J. (2019). Photoelectron balance in the dayside Martian upper atmosphere. Earth Planet. Phys., 3(5), 373–379. https://doi.org/10.26464/epp2019038 |
Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, M., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, B. (2016). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527 |
Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, Mazelle, M., … Jakosky, B. (2017a). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res. Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467 |
Xu, S. S., Mitchell, D., Luhmann, J., Ma, Y. J., Fang, X. H., Harada, Y., Hara, T., Brain, D., Weber, T., … DiBraccio, G. A. (2017b). High-altitude closed magnetic loops at mars observed by MAVEN. Geophys. Res. Lett., 44(22), 11229–11238. https://doi.org/10.1002/2017GL075831 |
Xu, S. S., Weber, T., Mitchell, D. L., Brain, D. A., Mazelle, C., DiBraccio, G. A., and Espley, J. (2019). A technique to infer magnetic topology at mars and its application to the terminator region. J. Geophys. Res. Space Phys., 124(3), 1823–1842. https://doi.org/10.1029/2018JA026366 |
Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. Space Phys., 95(A10), 17095–17102. https://doi.org/10.1029/JA095iA10p17095 |
[1] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[2] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[3] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[4] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[5] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[6] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[7] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[8] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[9] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[10] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[11] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[12] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[13] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[14] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[15] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[16] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[17] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[18] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
[19] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[20] |
Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)