Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Guo, J., Wimmer-Schweingruber, R. F., Dumbović, M., Heber, B., and Wang, Y. M. (2020). A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence. Earth Planet. Phys., 4(1), 62–72.doi: 10.26464/epp2020007

2020, 4(1): 62-72. doi: 10.26464/epp2020007

PLANETARY SCIENCES

A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence

1. 

School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

3. 

Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, DE 24118, Germany

4. 

Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia

Corresponding author: Jingnan Guo, jnguo@ustc.edu.cn

Received Date: 2019-10-16
Web Publishing Date: 2020-01-01

Forbush decreases are depressions in the galactic cosmic rays (GCRs) that are caused primarily by modulations of interplanetary coronal mass ejections (ICMEs) but also occasionally by stream/corotating interaction regions (SIRs/CIRs). Forbush decreases have been studied extensively using neutron monitors at Earth; recently, for the first time, they have been measured on the surface of another planet, Mars, by the Radiation Assessment Detector (RAD) on board the Mars Science Laboratory’s (MSL) rover Curiosity. The modulation of GCR particles by heliospheric transients in space is energy-dependent; afterwards, these particles interact with the Martian atmosphere, the interaction process depending on particle type and energy. In order to use ground-measured Forbush decreases to study the space weather environment near Mars, it is important to understand and quantify the energy-dependent modulation of the GCR particles by not only the pass-by heliospheric disturbances but also by the Martian atmosphere. Accordingly, this study presents a model that quantifies — both at the Martian surface and in the interplanetary space near Mars — the amplitudes of Forbush decreases at Mars during the pass-by of an ICME/SIR by combining the heliospheric modulation of GCRs with the atmospheric modification of such modulated GCR spectra. The modeled results are in good agreement with measurements of Forbush decreases caused by ICMEs/SIRs based on data collected by MSL on the surface of Mars and by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in orbit. Our model and these findings support the validity of both the Forbush decrease description and Martian atmospheric transport models.

Key words: ICME and Forbush decreases, space weather at Mars, Mars: atmosphere, GCR radiation

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, A., Axen, D., Adriani, O ., Barbarino, G. C., Bazilevskaya, G. A ., Bellotti, R., Boezio, M., Bogomolov, E. A., Bonechi, L., Bongi, M., Bonvicini, V., .. Zverev, V. G. (2011). PAMELA measurements of cosmic-ray proton and Helium spectra. Science, 332(6025), 69–72. https://doi.org/10.1126/science.1199172

Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce, P., .. others. (2003). Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

Aguilar, M., Ali Cavasonza, L., Alpat, B., Ambrosi, G., Arruda, L., Attig, N., Aupetit, S., Azzarello, P., Bachlechner, A., .. Zuccon, P. (2018). Observation of fine time structures in the cosmic proton and helium fluxes with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 121(5), 051101. https://doi.org/10.1103/PhysRevLett.121.051101

Appel, J. K., Köhler, J., Guo, J., Ehresmann, B., Zeitlin, C., Matthiä, D., Lohf, H., Wimmer-Schweingruber, R. F., Hassler, D., .. Weigle, G. (2018). Detecting upward directed charged particle fluxes in the mars science laboratory radiation assessment detector. Earth Space Sci., 5(1), 2–18. https://doi.org/10.1002/2016EA000240

Arunbabu, K. P., Antia, H. M., Dugad, S. R., Gupta, S. K., Hayashi, Y., Kawakami, S., Mohanty, P. K., Oshima, A., and Subramanian, P. (2015). How are Forbush decreases related to interplanetary magnetic field enhancements?. Astron. Astrophys., 580, A41. https://doi.org/10.1051/0004-6361/201425115

Belov, A. (2008). Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc. Int. Astron. Union, 4(S257), 439–450. https://doi.org/10.1017/S1743921309029676

Cane, H. V. (2000). Coronal mass ejections and Forbush decreases. Space Sci. Rev., 93(1-2), 55–77. https://doi.org/10.1023/A:1026532125747

Clem, J. M., and Dorman, L. I. (2000). Neutron monitor response functions. Space Sci. Rev., 93(1-2), 335–359. https://doi.org/10.1023/A:1026508915269

Corti, C., Bindi, V., Consolandi, C., and Whitman, K. (2016). Solar modulation of the local interstellar spectrum with Voyager 1, AMS-02, PAMELA, and BESS. The Astrophys. J., 829(1), 8. https://doi.org/10.3847/0004-637X/829/1/8

Dasso, S., Asorey, H., and For The Pierre Auger Collaboration. (2012). The scaler mode in the Pierre Auger Observatory to study heliospheric modulation of cosmic rays. Adv. Space Res., 49(11), 1563–1569. https://doi.org/10.1016/j.asr.2011.12.028

Démoulin, P., and Dasso, S. (2009). Causes and consequences of magnetic cloud expansion. Astronomy & Astrophysics, 498(551). https://doi.org/10.1051/0004-6361/200810971

Dumbović, M., Heber, B., Vršnak, B., Temmer, M., and Kirin, A. (2018). An analytical diffusion-expansion model for forbush decreases caused by flux ropes. The Astrophys. J., 860(1), 71. https://doi.org/10.3847/1538-4357/aac2de

Ehresmann, B., Zeitlin, C., Hassler, D. M., Wimmer-Schweingruber, R. F., Böhm, E., Böttcher, S., Brinza, D. E., Burmeister, S., Guo, J. N., .. Reitz, G. (2014). Charged particle spectra obtained with the mars science laboratory radiation assessment detector (MSL/RAD) on the surface of mars. J. Geophys. Res.: Planets, 119(3), 468–479. https://doi.org/10.1002/2013JE004547

Feldman, W. C., Ahola, K., Barraclough, B. L., Belian, R. D., Black, R. K., Elphic, R. C., Everett, D. T., Fuller, K. R., Kroesche, J., .. Thornton, G. W. (2004). Gamma-ray, neutron, and alpha-particle spectrometers for the lunar prospector mission. J. Geophys. Res.: Planets, 109(E7), E07S06. https://doi.org/10.1029/2003JE002207

Forbush, S. E. (1937). On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys. Rev., 51(12), 1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3

Freiherr von Forstner, J. L., Guo, J., Wimmer-Schweingruber, R. F., Hassler, D. M., Temmer, M., Dumbović, M., … Zeitlin, C. J. (2018). Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars. Journal of Geophysical Research: Space Physics, 123, 39–56. https://doi.org/10.1002/2017JA024700

Freiherr von Forstner, J. L., Guo, J., Wimmer-Schweingruber, R. F., Temmer, M., Dumbović, M., Veronig, A., Möstl, C., Hassler, D. M., Zeitlin, C. J., and Ehresmann, B. (2019). Tracking and validating ICMEs propagating toward Mars using STEREO Heliospheric Imagers combined with Forbush decreases detected by MSL/RAD. Space Weather, 17(4), 586–598. https://doi.org/10.1029/2018SW002138

Gieseler, J., Heber, B., and Herbst, K. (2017). An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to earth in a broad range of rigidities. J. Geophys. Res.: Space Phys., 122(11), 10964–10979. https://doi.org/10.1002/2017JA024763

Guo, J. N., Slaba, T. C., Zeitlin, T., Wimmer-Schweingruber, R. F., Badavi, F. F., Böhm, E., Böttcher, S., Brinza, D. E., Ehresmann, B.,.. Rafkin, S. (2017). Dependence of the Martian radiation environment on atmospheric depth: modeling and measurement. J. Geophys. Res.: Planets, 122(2), 329–341. https://doi.org/10.1002/2016JE005206

Guo, J. N., Zeitlin, C., Wimmer-Schweingruber, R., Hassler, D. M., Köhler, J., Ehresmann, B., Böttcher, S., Böhm, E., and Brinza, D. E. (2017). Measurements of the neutral particle spectra on mars by MSL/RAD from 2015-11-15 to 2016-01-15. Life Sci. Space Res., 14, 12–17. https://doi.org/10.1016/j.lssr.2017.06.001

Guo, J. N., Lillis, R., Wimmer-Schweingruber, R. F., Zeitlin, C., Simonson, P., Rahmati, A., Posner, A., Papaioannou, A., Lundt, N.,.. Böttcher, S. (2018). Measurements of Forbush decreases at mars: both by MSL on ground and by maven in orbit. Astron. Astrophys., 611, A79. https://doi.org/10.1051/0004-6361/201732087

Guo, J. N., Zeitlin, C., Wimmer-Schweingruber, R. F., McDole, T., Kühl, P., Appel, J. C., Matthiä, D., Krauss, J., and Köhler, J. (2018). A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of mars. The Astrophys. J., 155(1), 49. https://doi.org/10.3847/1538-3881/aaa085

Guo, J. N., Banjac, S., Röstel, L., Terasa, J. C., Herbst, K., Heber, B., and Wimmer-Schweingruber, R. F. (2019). Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars. J. Space Wea. Space Climate, 9, A2. https://doi.org/10.1051/swsc/2018051

Guo, J. N., Wimmer-Schweingruber, R. F., Grande, M., Lee-Payne, Z. H., and Matthiä, D. (2019). Ready functions for calculating the Martian radiation environment. J. Space Wea. Space Climate, 9, A7. https://doi.org/10.1051/swsc/2019004

Haberle, R. M., Gómez-Elvira, J., de la Torre Juárez, M., Harri, A. M., Hollingsworth, J. L., Kahanpää, H., Kahre, M. A., Lemmon, M., Martín-Torres, F. J., … REMS/MSL Science Teams. (2014). Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res.: Planets, 119(3), 440–453. https://doi.org/10.1002/2013JE004488

Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., Böttcher, S., Martin, C., Andrews, J., . . Cucinotta, F. A. (2012). The Radiation Assessment Detector (RAD) Investigation. Space Science Reviews, 170(1–4), 503–558. https://doi.org/10.1007/s11214-012-9913-1

Kadokura, A., and Nishida, A. (1986). Numerical modeling of the 22-year variation of the cosmic ray intensity and anisotropy. J. Geophys. Res.: Space Phys., 91(A1), 1–11. https://doi.org/10.1029/JA091iA01p00001

Köhler, J., Zeitlin, C., Ehresmann, B., Wimmer-Schweingruber, R., Hassler, D. M., Reitz, G., Brinza, D. E., Weigle, G., Appel, J.,.. Kortmann, O. (2014). Measurements of the neutron spectrum on the Martian surface with MSL/RAD. J. Geophys. Res.: Planets, 119(3), 594–603. https://doi.org/10.1002/2013JE004539

Larson, D. E., Lillis, R. J., Lee, C. O., Dunn, P. A., Hatch, K., Robinson, M., Glaser, D., Chen, J. X., Curtis, D.,.. Jakosky, B. M. (2015). The MAVEN solar energetic particle investigation. Space Sci. Rev., 195(1-4), 153–172. https://doi.org/10.1007/s11214-015-0218-z

Lewis, S. R., Collins, M., Read, P. L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., and Huot, J. P. (1999). A climate database for Mars. J. Geophys. Res.: Planets, 104(E10), 24177–24194. https://doi.org/10.1029/1999JE001024

Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., and Abunina, M. (2016). Solar activity parameters and associated Forbush decreases during the minimum between cycles 23 and 24 and the ascending phase of cycle 24. Solar Phys., 291(3), 1025–1041. https://doi.org/10.1007/s11207-016-0863-8

Luo, X., Potgieter, M. S., Zhang, M., and Feng, X. S. (2017). A numerical study of Forbush decreases with a 3D cosmic-ray modulation model based on an SDE approach. The Astrophys. J., 839(1), 53. https://doi.org/10.3847/1538-4357/aa6974

Luo, X., Potgieter, M. S., Zhang, M., and Feng, X. S. (2018). A study of electron Forbush decreases with a 3D SDE numerical model. The Astrophys. J., 860(2), 160. https://doi.org/10.3847/1538-4357/aac5f2

Matthiä, D., Ehresmann, B., Lohf, H., Köhler, J., Zeitlin, C., Appel, J., Sato, T., Slaba, T., Martin, C.,.. Wimmer-Schweingruber, R. F. (2016). The Martian surface radiation environment-a comparison of models and MSL/RAD measurements. J. Space Wea. Space Climate, 6, A13. https://doi.org/10.1051/swsc/2016008

Melkumyan, A. A., Belov, A. V., Abunina, M. A., Abunin, A. A., Eroshenko, E. A., Yanke, V. G., and Oleneva, V. A. (2019). Comparison between statistical properties of Forbush decreases caused by solar wind disturbances from coronal mass ejections and coronal holes. Adv. Space Res., 63(2), 1100–1109. https://doi.org/10.1016/j.asr.2018.10.009

Moraal, H. (2013). Cosmic-ray modulation equations. Space Sci. Rev., 176(1-4), 299–319. https://doi.org/10.1007/s11214-011-9819-3

Möstl, C., Rollett, T., Frahm, R. A., Liu, Y. D., Long, D. M., Colaninno, R. C., … Vršnak, B. (2015). Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Communications, 6, 7135. https://doi.org/10.1038/ncomms8135

Munini, R., Boezio, M., Bruno, A., Christian, E. C., de Nolfo, G. A., Di Felice, V., Martucci, M., Merge, M., Richardson, I. G.,.. Potgieter, M. S. (2018). Evidence of energy and charge sign dependence of the recovery time for the 2006 December Forbush event measured by the PAMELA experiment. Astrophys. J., 853, 76. https://doi.org/10.3847/1538-4357/aaa0c8

Paizis, C., Heber, B., Ferrando, P., Raviart, A., Falconi, B., Marzolla, S., Potgieter, M. S., Bothmer, V., Kunow, H.,.. Posner, A. (1999). Amplitude evolution and rigidity dependence of the 26-day recurrent cosmic ray decreases: COSPIN/KET results. J. Geophys. Res.: Space Phys., 104(A12), 28241–28247. https://doi.org/10.1029/1999JA900370

Parker, E. N. (1965). The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13(1), 9–49. https://doi.org/10.1016/0032-0633(65)90131-5

Papaioannou, A., Belov, A. V., Abunina, M., Guo, J., Anastasiadis, A., Wimmer-Schweingruber, R. F., … Steigies, C. T. (2019). A catalogue of forbush decreases recorded on the surface of mars from 2012 until 2016: Comparisonwith terrestrial fds. Solar Physics, 294(6), 66. https://doi.org/10.1007/s11207-019-1454-2

Rafkin, S. C. R., Zeitlin, C., Ehresmann, B., Hassler, D., Guo, J. N., Köhler, J., Wimmer-Schweingruber, R., Gomez-Elvira, J., Harri, A. M.,.. the MSL Science Team. (2014). Diurnal variations of energetic particle radiation at the surface of mars as observed by the mars science laboratory radiation assessment detector. J. Geophys. Res.: Planets, 119(6), 1345–1358. https://doi.org/10.1002/2013JE004525

Richardson, I. G., Cane, H. V., and Wibberenz, G. (1999). A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima. J. Geophys. Res.: Space Phys., 104(A6), 12549–12561. https://doi.org/10.1029/1999JA900130

Richardson, I. G. (2004). Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev., 111(3-4), 267–376. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e

Simpson, J. A. (1983). Elemental and isotopic composition of the galactic cosmic rays. Ann. Rev. Nucl. Part. Sci., 33, 323–382. https://doi.org/10.1146/annurev.ns.33.120183.001543

Usoskin, I. G., Braun, I., Gladysheva, O. G., Hörandel, J. R., Jämsén, T., Kovaltsov, G. A., and Starodubtsev, S. A. (2008). Forbush decreases of cosmic rays: energy dependence of the recovery phase. J. Geophys. Res.: Space Phys., 113(A7), A07102. https://doi.org/10.1029/2007JA012955

Usoskin, I. G., Bazilevskaya, G. A., and Kovaltsov, G. A. (2011). Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res.: Space Phys., 116(A2), A02104. https://doi.org/10.1029/2010JA016105

Usoskin, I. G., Kovaltsov, G. A., Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E.A., Bongi, M.,.. Zverev, V. G. (2015). Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases. Adv. Space Res., 55(12), 2940–2945. https://doi.org/10.1016/j.asr.2015.03.009

Wang, Y. M., Shen, C. L., Liu, R., Liu, J. J., Guo, J. N., Li, X. L., Xu, M. J., Hu, Q., Zhang, T. L. (2018). Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud. Journal of Geophysical Research: Space Physics, 123, 3238–3261. https://doi.org/10.1002/2017JA024971

Wibberenz, G., le Roux, J. A., Potgieter, M. S., and Bieber, J. W. (1998). Transient effects and disturbed conditions. Space Sci. Rev., 83(1), 309–348. https://doi.org/10.1023/A:1005083109827

Winslow, R. M., Schwadron, N. A., Lugaz, N., Guo, J. N., Joyce, C. J., Jordan, A. P., Wilson, J. K., Spence, H. E., Lawrence, D. J.,.. Mays, M. L. (2018). Opening a window on ICME-driven GCR modulation in the inner solar system. The Astrophys. J., 856(2), 139. https://doi.org/10.3847/1538-4357/aab098

Witasse, O., Sánchez-Cano, B., Mays, M., Kajdič, P., Opgenoorth, H., Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J.,.. Altobelli, N. (2017). Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and new horizons en route to Pluto: comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. J. Geophys. Res.: Space Phys., 122(8), 7865–7890. https://doi.org/10.1002/2017JA023884

[1]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[2]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[3]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[4]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[5]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[6]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[7]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[8]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[9]

TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010

[10]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[11]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[12]

LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023

[13]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[14]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[15]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[16]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang