Citation:
Le, H. J., Liu, L. B., Chen, Y. D., Zhang, H. (2019). Anomaly distribution of ionospheric total electron content responses to some solar flares. Earth Planet. Phys., 3(6), 481–488.. http://doi.org/10.26464/epp2019053
2019, 3(6): 481-488. doi: 10.26464/epp2019053
Anomaly distribution of ionospheric total electron content responses to some solar flares
1. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
2. | Innovation Academy of Earth Science, Chinese Academy of Sciences, Beijing 100029, China |
3. | Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
4. | College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China |
Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle (SZA): the ionospheric responses are negatively related to the SZAs. The largest enhancement in electron density always occurs around the subsolar point. However, from 2001 to 2014, the global distribution of total electron content (TEC) responses showed no obvious relationship between the increases in TEC and the SZA during some solar flares. During these solar flares, the greatest enhancements in TEC did not appear around the subsolar point, but rather far away from the subsolar point. The distribution of TEC enhancements showed larger TEC enhancements along the same latitude. The distribution of anomalous ionospheric responses to the solar flares was not structured the same as traveling ionospheric disturbances. This anomaly distribution was also unrelated to the distribution of background neutral density. It could not be explained by changes in the photochemical process induced by the solar flares. Thus, the transport process could be one of the main reasons for the anomaly distribution of ionospheric responses to the solar flares. This anomaly distribution also suggests that not only the photochemical process but also the transport process could significantly affect the variation in ionospheric electron density during some solar flares.
Afraimovich, E. L. (2000). GPS global detection of the ionospheric response to solar flares. Radio Sci., 35(6), 1417–1424. https://doi.org/10.1029/2000RS002340 |
Cherniak, I., Zakharenkova, I., and Redmon, R. J. (2015). Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: Ground-based GPS measurements. Space Weather, 13(9), 585–597. https://doi.org/10.1002/2015SW001237 |
Coster, A., and Skone, S. (2009). Monitoring storm-enhanced density using IGS reference station data. J. Geod., 83(3-4), 345–351. https://doi.org/10.1007/s00190-008-0272-3 |
Foster, J. C. (1993). Storm time plasma transport at middle and high latitudes. J. Geophys. Res., 98(A2), 1675–1689. https://doi.org/10.1029/92JA02032 |
Le, H. J., Liu, L. B., Chen, B., Lei, J. H., Yue, X. N., and Wan, W. X. (2007). Modeling the responses of the middle latitude ionosphere to solar flares. J. Atmos. Sol. Terr. Phys., 69(13), 1587–1598. https://doi.org/10.1016/j.jastp.2007.06.005 |
Le, H. J., Liu, L. B., He, H., and Wan, W. X. (2011). Statistical analysis of solar EUV and X-ray flux enhancements induced by solar flares and its implication to upper atmosphere. J. Geophys. Res., 116(A11), A11301. https://doi.org/10.1029/2011JA016704 |
Le, H. J., Liu, L. B., Chen, Y. D., and Wan, W. X. (2013). Statistical analysis of ionospheric responses to solar flares in the solar cycle 23. J. Geophys. Res., 118(1), 576–582. https://doi.org/10.1029/2012JA017934 |
Le, H. J., Ren, Z. P., Liu, L. B., Chen, Y. D., and Zhang, H. (2015). Global thermospheric disturbances induced by a solar flare: a modeling study. Earth Planets Space, 67, 3. https://doi.org/10.1186/s40623-014-0166-y |
Le, H. J., Liu, L. B., Ren, Z. P., Chen, Y. D., Zhang, H., and Wan, W. X. (2016). A modeling study of global ionospheric and thermospheric responses to extreme solar flare. J. Geophys. Res., 121(1), 832–840. https://doi.org/10.1002/2015JA021930 |
Leonovich, L. A., Afraimovich, E. L., Romanova, E. B., and Taschilin, A. V. (2002). Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network. Ann. Geophys., 20(12), 1935–1941. https://doi.org/10.5194/angeo-20-1935-2002 |
Leonovich, L. A., Tashchilin, A. V., and Portnyagina, O. Y. (2010). Dependence of the ionospheric response on the solar flare parameters based on the theoretical modeling and GPS data. Geomagn. Aeronomy, 50(2), 201–210. https://doi.org/10.1134/S0016793210020076 |
Liu, J. Y., Lin, C. H., Tsai, H. F., and Liou, Y. A. (2004). Ionospheric solar flare effects monitored by the ground-based GPS receivers: theory and observation. J. Geophys. Res., 109(A1), A01307. https://doi.org/10.1029/2003JA009931 |
Liu, J. Y., Lin, C. H., Chen, Y. I., Lin, Y. C., Fang, T. W., Chen, C. H., Chen, Y. C., and Hwang, J. J. (2006). Solar flare signatures of the ionospheric GPS total electron content. J. Geophys. Res., 111(A5), A05308. https://doi.org/10.1029/2005JA011306 |
Manju, G., Simi, K. G., and Nayar, S. R. P. (2012). Analysis of solar EUV and X-ray flux enhancements during intense solar flare events and the concomitant response of equatorial and low latitude upper atmosphere. J. Atmos. Sol. Terr. Phys., 86, 1–5. https://doi.org/10.1016/j.jastp.2012.05.008 |
Maruyama, T. (2006). Extreme enhancement in total electron content after sunset on 8 November 2004 and its connection with storm enhanced density. Geophys. Res. Lett., 33(20), L20111. https://doi.org/10.1029/2006GL027367 |
Mendillo, M., and Evans, J. V. (1974). Incoherent scatter observations of the ionospheric response to a large solar flare. Radio Sci., 9(2), 197–203. https://doi.org/10.1029/RS009i002p00197 |
Nogueira, P. A. B., Souza, J. R., Abdu, M. A., Paes, R. R., Sousasantos, J., Marques, M. S., Bailey, G. J., Denardini, C. M., Batista, I. S., … Chen, S. S. (2015). Modeling the equatorial and low-latitude ionospheric response to an intense X-class solar flare. J. Geophys. Res., 120(4), 3021–3032. https://doi.org/10.1002/2014JA020823 |
Pawlowski, D. J., and Ridley, A. J. (2008). Modeling the thermospheric response to solar flares. J. Geophys. Res., 113(A10), A10309. https://doi.org/10.1029/2008JA013182 |
Pawlowski, D. J., and Ridley, A. J. (2011). The effects of different solar flare characteristics on the global thermosphere. J. Atmos. Sol. Terr. Phys., 73(13), 1840–1848. https://doi.org/10.1016/j.jastp.2011.04.004 |
Qian, L. Y., Burns, A. G., Chamberlin, P. C., and Solomon, S. C. (2010). Flare location on the solar disk: modeling the thermosphere and ionosphere response. J. Geophys. Res., 115(A9), A09311. https://doi.org/10.1029/2009JA015225 |
Qian, L. Y., Burns, A. G., Solomon, S. C., and Chamberlin, P. C. (2012). Solar flare impacts on ionospheric electrodyamics. Geophys. Res. Lett., 39(6), L06101. https://doi.org/10.1029/2012GL051102 |
Tsurutani, B. T., Judge, D. L., Guarnieri, F. L., Gangopadhyay, P., Jones, A. R., Nuttall, J., Zambon, G. A., Didkovsky, L., Mannucci, A. J., … Viereck, R. (2005). The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the Bastille Day event. Geophys. Res. Lett., 32(3), L03S09. https://doi.org/10.1029/2004GL021475 |
Wan, W. X., Liu, L. B., Yuan, H., Ning, B. Q., and Zhang, S. R. (2005). The GPS measured SITEC caused by the very intense solar flare on July 14, 2000. Adv. Space Res., 36(12), 2465–2469. https://doi.org/10.1016/j.asr.2004.01.027 |
Xiong, B., Wan, W. X., Liu, L. B., Withers, P., Zhao, B. Q., Ning, B. Q., Wei, Y., Le, H. J., Ren, Z. P., … Liu, J. (2011). Ionospheric response to the X-class solar flare on 7 September 2005. J. Geophys. Res., 116(A11), A11317. https://doi.org/10.1029/2011JA016961 |
Xiong, B., Wan, W. X., Ning, B. Q., Ding, F., Hu, L. H., and Yu, Y. (2014). A statistic study of ionospheric solar flare activity indicator. Space Wea., 12(1), 29–40. https://doi.org/10.1002/2013SW001000 |
Xiong, B., Wan, W. X., Yu, Y., and Hu, L. H. (2016). Investigation of ionospheric TEC over China based on GNSS data. Adv. Space Res., 58(6), 867–877. https://doi.org/10.1016/j.asr.2016.05.033 |
Xiong, B., Li, X. L., Wan, W. X., She, C. L., Hu, L. H., Ding, F., and Zhao, B. Q. (2019). A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem. Chinese J. Geophys. (in Chinese) |
Yizengaw, E., Moldwin, M. B., and Galvan, D. A. (2006). Ionospheric signatures of a plasmaspheric plume over Europe. Geophys. Res. Lett., 33(17), L17103. https://doi.org/10.1029/2006GL026597 |
Zhang, D. H., Xiao, Z., and Chang, Q. (2002). The correlation of flare's location on solar disc and the sudden increase of total electron content. Chin. Sci. Bull., 47(1), 83–85. https://doi.org/10.1360/02tb9017 |
Zhang, D. H., and Xiao, Z. (2005). Study of ionospheric response to the 4B flare on 28 October 2003 using international GPS service network data. J. Geophys. Res., 110(A3), A03307. https://doi.org/10.1029/2004JA010738 |
Zhang, D. H., Mo, X. H., Cai, L., Zhang, W., Feng, M., Hao, Y. Q., and Xiao, Z. (2011). Impact factor for the ionospheric total electron content response to solar flare irradiation. J. Geophys. Res., 116(A4), A04311. https://doi.org/10.1029/2010JA016089 |
Zhang, R. L., Liu, L. B., Le, H. J., and Chen, Y. D., (2017). Equatorial ionospheric electrodynamics during solar flares. Geophys. Res. Lett., 44(10), 4558–4565. https://doi.org/10.1002/2017GL073238 |
Zou, S. S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., and Ruohoniemi, J. M. (2013). Multi-instrument observations of SED during 24-25 October 2011 storm: Implications for SED formation processes. J. Geophys. Res., 118(12), 7798–7809. https://doi.org/10.1002/2013JA018860 |
Zou, S. S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., and Ruohoniemi, J. M. (2014). On the generation/decay of the storm-enhanced density plumes: role of the convection flow and field-aligned ion flow. J. Geophys. Res., 119(10), 8543–8559. https://doi.org/10.1002/2014JA020408 |
[1] |
Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011 |
[2] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[3] |
Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032 |
[4] |
JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002 |
[5] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[6] |
Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034 |
[7] |
Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054 |
[8] |
ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007 |
[9] |
Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025 |
[10] |
LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011 |
[11] |
Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010 |
[12] |
Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040 |
[13] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[14] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[15] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[16] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[17] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[18] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[19] |
Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014 |
[20] |
WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)