Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Chu, R. S., Zhu, L. P., and Ding, Z. F. (2019). Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms. Earth Planet. Phys., 3(5), 444–458..

2019, 3(5): 444-458. doi: 10.26464/epp2019045


Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms


State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Wuhan 430077, China


Department of Earth and Atmospheric Sciences, Saint Louis University, St Louis, MO 63108, USA


Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China


Institute of Geophysics, China Earthquake Administration, Beijing 100083, China

Corresponding author: RiSheng Chu,

Received Date: 2019-05-25
Web Publishing Date: 2019-08-23

P-wave waveforms in the distance range between 12° and 30° were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas. The waveform data from 504 earthquakes with magnitudes larger than 5.0 between 1990 and 2005 that occurred within 30° from the center of the Plateau were modelled. We divided the study area into 6 regions and modeled upper-mantle-distance P waveforms with turning points beneath each region separately. The results show that the upper-mantle P-wave velocity structures beneath India, the Himalayas, and the Lhasa Terrane are similar and contain a high-velocity lid about 250 km thick. The upper-mantle velocities down to 200 km beneath the Qiangtang Terrane, the Tarim Basin, and especially the Songpan-Garzê Terrane are lower than those in the south. The 410-km discontinuity beneath these two terranes is elevated by about 20 km. High-velocity anomalies are found in the transition zone below 500 km under the Lhasa and Qiangtang Terranes. The results suggest that the Tibetan Plateau was generated by thrusting of the Indian mantle lithosphere under the southern part of Tibet. Portions of the thickened Eurasian mantle lithosphere were delaminated; they are now sitting in the transition zone beneath southern Tibet and atop of the 410-km discontinuity underneath northern Tibet.

Key words: Tibetan Plateau, upper mantle structure, triplication, waveform modelling

Alsdorf, D., Makovsky, Y., Zhao, W., Brown, L. D., Nelson, K. D., Klemperer, S., Hauck, M., Ross, A., Cogan, M., … Kuo, J. (1998). INDEPTH (International Deep Profiling of Tibet and the Himalaya) multichannel seismic reflection data: description and availability. J. Geophys. Res., 103(B11), 26993–26999.

Argand, E. (1924). La tectonique de l’Asie. In Proceedings of the 13th International Geological Congress (pp. 171-372). Brussels.

Bao, X. W., Song, X. D., Xu, M. J., Wang, L. S., Sun, X. X., Mi, N., Yu, D. Y., and Li, H. (2013). Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 369-370, 129–137.

Bina, C. R. (1991). Mantle discontinuities. Rev. Geophys, 29(S2), 783–793.

Chen, W. P., and Tseng, T. L. (2007). Small 660-km seismic discontinuity beneath Tibet implies resting ground for detached lithosphere. J. Geophys. Res., 112(B5), B05309.

Chu, R. S., Zhu, L. P., and Helmberger, D. V. (2009). Determination of earthquake focal depths and source time functions in central Asia using teleseismic P waveforms. Geophys. Res. Lett., 36(17), L17317.

Chu, R. S., Schmandt, B., and Helmberger, D. V. (2012a). Juan de Fuca subduction zone from a mixture of tomography and waveform modeling. J. Geophys. Res., 117(B3), B03304.

Chu, R. S., Schmandt, B., and Helmberger, D. V. (2012b). Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms. Geochem. Geophys. Geosyst., 13(2), Q0AK04.

Chu, R. S., Leng, W., Helmberger, D. V., and Gurnis, M. (2013). Hidden hotspot track beneath the eastern United States. Nat. Geosci., 6(11), 963–966.

Chu, R. S., Helmberger, D., and Gurnis, D. (2014). Upper mantle surprises derived from the recent Virginia earthquake waveform data. Earth Planet. Sci. Lett., 402, 167–175.

Chu, R. S., and Helmberger, D. (2014). Lithospheric waveguide beneath the Midwestern United States; massive low-velocity zone in the lower crust. Geochem. Geophys. Geosyst., 15(4), 1348–1362.

De La Torre, T. L., and Sheehan, A. (2005). Broadband seismic noise analysis of the Himalayan Nepal Tibet seismic experiment. Bull. Seismol. Soc. Am., 95(3), 1202–1208.

Duan, Y. H., Tian, X. B., Liang, X. F., Li, W., Wu, C. L., Zhou, B. B., and Iqbal, J. (2017). Subduction of the Indian slab into the mantle transition zone revealed by receiver functions. Tectonophysics, 702, 61–69.

England, P., and Houseman, G. (1986). Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. J. Geophys. Res., 91(B3), 3664–3676.

Fan, G. W., and Wallace, T. (1991). The determination of source parameters for small earthquakes from a single, very broadband seismic station. Geophys. Res. Lett., 18(8), 1385–1388.

Gansser, A. (1980). The significance of the Himalayan suture zone. Tectonophysics, 62(1-2), 37–40, 43-52.

Guo, X. Y., Gao, R., Randy Keller, G., Xu, X., Wang, H. Y., and Li, W. H. (2013). Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range. Earth Planet. Sci. Lett., 379, 72–80.

He, R. Z., Zhao, D. P., Gao, R., and Zheng, H. W. (2010). Tracing the Indian lithospheric mantle beneath central Tibetan Plateau using teleseismic tomography. Tectonophysics, 491(1-4), 230–243.

Hearn, T. M., Ni, J. F., Wang, H. Y., Sandvol, E. A., and Chen, Y J. (2019). Depth-dependent P n velocities and configuration of Indian and Asian lithosphere beneath the Tibetan Plateau. Geophys. J. Int., 217(1), 179–189.

Huang, J. L., and Zhao, D. P. (2006). High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111(B9), B09305.

Johnson, M. R. W. (2002). Shortening budgets and the role of continental subduction during the India-Asia collision. Earth-Sci. Rev., 59(1-4), 101–123.

Kao, H., Gao, R., Rau, R. J., Shi, D. N., Chen, R. Y., Guan, Y., and Wu, F. T. (2001). Seismic image of the Tarim Basin and its collision with Tibet. Geology, 29(7), 575–578.<0575:SIOTTB>2.0.CO;2

Lebedev, S., and Van Der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int., 173(2), 505–518.

Li, C., Van der Hilst, R. D., Meltzer, A. S., and Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett., 274(1-2), 157–168.

Li, H. Y., Shen, Y., Huang, Z. X., Li, X. F., Gong, M., Shi, D. N., Sandvol, E., and Li, A. B. (2014). The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res., 119(3), 1954–1970.

Liang, C. T., and Song, X. D. (2006). A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography. Geophys. Res. Lett., 33(22), L22306.

Liang, X. F., Chen, Y., Tian, X. B., Chen, Y. J., Ni, J., Gallegos, A., Klemperer, S. L., Wang, M. L., Xu, T., … Teng, J. W. (2016). 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet. Sci. Lett., 443, 162–175.

Liu, M., Cui, X. J., and Liu, F. T. (2004). Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?. Tectonophysics, 393(3-4), 29–42.

Liu, Q. Y., Van Der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365.

Lü, Y., Ni, S. D., Liu, B., and Sun, Y. S. (2011). Pn tomographic velocity and anisotropy beneath the Tibetan Plateau and the adjacent regions. Earth, Planets Space, 63(11), 1169–1173.

Lyon-Caen, H. (1986). Comparison of the upper mantle shear wave velocity structure of the Indian Shield and the Tibetan Plateau and Tectonic Implications. Geophys. J. Int., 86(3), 727–749.

Meltzer, A, Sarker, G., Beaudoin, B., Seeber, L., and Armbruster, J. G. (2001). Seismic characterization of an active metamorphic massif, Nanga Parbat, Pakistan Himalaya. Geology, 29(7), 651–654.<0651:SCOAAM>2.0.CO;2

Molnar, P., and Tapponnier, P. (1975). Cenozoic tectonics of Asia: effects of a continental collision. Science, 189(4201), 419–426.

Nelson, K. D., Zhao, W. J., Brown, L. D., Kuo, J., Che, J. K., Liu, X. W., Klemperer, S. L., Makovsky, Y., Meissner, R., … Edwards, M. (1996). Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science, 274(5293), 1684–1688.

Owens, T. J., Randall, G. E., Wu, F. T., and Zeng, R. S. (1993). Passcal instrument performance during the Tibetan Plateau passive seismic experiment. Bull. Seismol. Soc. Am., 83(6), 1959–1970.

Owens, T. J., and Zandt, G. (1997). Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628), 37–43.

Pan, S. Z., and Niu, F. L. (2011). Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis. Earth Planet. Sci. Lett., 303(3-4), 291–298.

Royden, L. H., Burchfiel, B. C., and Van Der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058.

Shen, X. Z., Zhou, Y. Z., Zhang, Y. S., Mei, X. P., Guo, X., Liu, X. Z, Qin, M. Z., Wei, C. X., and Li, C. Q. (2014). Receiver function structures beneath the deep large faults in the northeastern margin of the Tibetan Plateau. Tectonophysics, 610, 63–73.

Sol, S., Meltzer, A., Bürgmann, R., Van Der Hilst, R. D., King, R., Chen, Z., Koons, P. O., Lev, E., Liu, Y. P., … Zurek, B. (2007). Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566.

Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J. S. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677.

Velasco, A. A., Gee, V. L., Rowe, C., Grujic, D., Hollister, L. S., Hernandez, D., Miller, K. C., Tobgay, T., Fort, M., Harder, S. (2007). Using small, temporary seismic networks for investigating tectonic deformation: brittle deformation and evidence for strike-slip faulting in Bhutan. Seismol. Res. Lett., 78(4), 446–453.

Wang, C. Y., Lou, H., Silver, P. G., Zhu, L. P., and Chang, L. J. (2010). Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 289(3-4), 367–376.

Xu, Q., Zhao, J. M., Yuan, X. H., Liu, H. B., and Pei, S. P. (2015). Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting. Gondwana Res., 27(4), 1487–1493.

Xu, Y., Li, Z. W., and Roecker, S. W. (2007). Uppermost mantle structure and its relation with seismic activity in the central Tien Shan. Geophys. Res. Lett., 34(10), L10304.

Yang, Y. J., Zheng, Y., Chen, S. Y., Zhou, S. Y., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., … Ritzwoller, M. H. (2010). Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem. Geophys. Geosyst., 11(8), Q08010.

Yao, H. J., Xu, G. M., Zhu, L. B., and Xiao, X. (2005). Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Phys. Earth Planet. Inter., 148(1), 39–54.

Yao, H. J., Van Der Hilst, R. D., and De Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis — I. Phase velocity maps. Geophys. J. Int., 166(2), 732–744.

Yin, A., and Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280.

Yue, H., Chen, Y. J., Sandvol, E., Ni, J., Hearn, T., Zhou, S. Y., Feng, Y. G., Ge, Z. X., Trujillo, A., … Liu, Z. (2012). Lithospheric and upper mantle structure of the northeastern Tibetan Plateau. J. Geophys. Res., 117(B5), B05307.

Zhang, H., Zhao, D. P., Zhao, J. M., and Xu, Q. (2012). Convergence of the Indian and Eurasian plates under eastern Tibet revealed by seismic tomography. Geochem. Geophys. Geosyst., 13(6), Q06W14.

Zhang, R. Q., Wu, Q., Li, Y. H., and Zeng, R. S. (2011). Differential patterns of SH and P wave velocity structures in the transition zone beneath northwestern Tibet. Sci. China Earth Sci., 54(10), 1551–1562.

Zhao, J. M., Yuan, X. H., Liu, H. B., Kumar, P., Pei, S. P., Kind, R., Zhang, Z. J., Teng, J. W., Ding, L., … Wang, W. (2010). The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. U.S.A., 107(25), 11229–11233.

Zhao, L. S., Helmberger, D. V., and Harkrider, D. G. (1991). Shear-velocity structure of the crust and upper mantle beneath the Tibetan Plateau and southeastern China. Geophys. J. Int., 105(3), 713–730.

Zhao, W., Mechie, J., Brown, L. D., Guo, J., Haines, S., Hearn, T., Klemperer, S. L., Ma, Y. S., Meissner, R., … Saul, J. (2001). Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys. J. Int., 145(2), 486–498.

Zhao, W. J., Nelson, K. D., and Team, P. I. (1993). Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455), 557–559.

Zhao, W. L., and Morgan, W. J. (1985). Uplift of Tibetan Plateau. Tectonics, 4(4), 359–369.

Zhu, L. P., Owens, T. J., and Randall, G. E. (1995). Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions. Bull. Seismol. Soc. Am., 85(6), 1531–1540.

Zhu, L. P., and Helmberger, D. V. (1998). Moho offset across the northern margin of the Tibetan Plateau. Science, 281(5380), 1170–1172.


Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029


JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017


Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030


YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056


DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng, 2021: Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method, Earth and Planetary Physics, 5, 149-157. doi: 10.26464/epp2021022


Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055


XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038


Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029


HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, HeTing Jian, 2022: Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data, Earth and Planetary Physics, 6, 366-377. doi: 10.26464/epp2022034


Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003


Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036


YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031


JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms

RiSheng Chu, LuPei Zhu, ZhiFeng Ding