Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, Y., Chen, Q. L., Li, J. P., Zhang, W. J., Song, M. H., Hua, W., Cai, H. K., and Wu, X. F. (2019). The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models. Earth Planet. Phys., 3(5), 400–413.doi: 10.26464/epp2019041

2019, 3(5): 400-413. doi: 10.26464/epp2019041

ATMOSPHERIC PHYSICS

The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models

1. 

College of Atmospheric Science, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China

2. 

Key Laboratory of Physical Oceanography–Institute for Advanced Ocean Studies, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China

3. 

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

Corresponding author: QuanLiang Chen, chenql@cuit.edu.cn

Received Date: 2019-05-03
Web Publishing Date: 2019-09-01

The cold tongue mode (CTM), which represents the out-of-phase relationship in sea surface temperature anomaly (SSTA) variability between the Pacific cold tongue region and elsewhere in the tropical Pacific, shows a long-term cooling trend in the eastern equatorial Pacific. In this study, we investigate how well the CTM is reproduced in historical simulations generated by the 20 models considered in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). Qualitatively, all 20 models roughly capture the cooling SSTA associated with the CTM. However, a quantitative assessment (i.e., Taylor diagrams and the ratio of the trend between the simulations and observations) shows that only five of these 20 models (i.e., CESM1-CAM5, CMCC-CM, FGOALS-g2, IPSL-CM5B-LR, and NorESM1-M) can reproduce with useful accuracy the spatial pattern and long-term trend of the CTM. We find that these five models generally simulate the main ocean dynamical process associated with the CTM. That is, these models adequately capture the long-term cooling trend in the vertical advection of the anomalous temperature by the mean upwelling. We conclude that the performance of these CMIP5 models, with respect to simulations of the long-term cooling trend associated with the vertical advection, and the related long-term decreasing trend of the vertical gradient of the oceanic temperature anomaly, can play an important role in successful reproduction of the CTM.

Key words: tropical Pacific, La Niña-like, cold tongue mode, ocean dynamical process, CMIP5

Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112(C11), C11007. https://doi.org/10.1029/2006JC003798

Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J. (2014). ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dyn., 42(7-8), 1999–2018. https://doi.org/10.1007/s00382-013-1783-z

Cane, M. A., Clement, A. C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S. E., and Murtugudde, R. (1997). Twentieth-century sea surface temperature trends. Science, 275(5302), 957–960. https://doi.org/10.1126/science.275.5302.957

Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., … Yeh, S. W. (2015). Understanding ENSO diversity. Bull. Am. Meteor. Soc., 96(6), 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1

Coats, S., and Karnauskas, K. B. (2017). Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability?. Geophys. Res. Lett., 44(19), 9928–9937. https://doi.org/10.1002/2017GL074622

Coats, S., and Karnauskas, K. B. (2018). A role for the Equatorial Undercurrent in the ocean dynamical thermostat. J. Climate, 31(16), 6245–6261. https://doi.org/10.1175/JCLI-D-17-0513.1

Collins, M., An, S. I., Cai, W. J., Ganachaud, A., Guilyardi, E., Jin, F. F., Jochum, M., Lengaigne, M., Power, S., … Wittenberg, A. (2010). The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci., 3(6), 391–397. https://doi.org/10.1038/ngeo868

Compo, G. P., and Sardeshmukh, P. D. (2010). Removing ENSO-Related Variations from the Climate Record. J. Climate, 23(8), 1957–1978. https://doi.org/10.1175/2009JCLI2735.1

Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S. (2009). Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115–143. https://doi.org/10.1146/annurev-marine-120408-151453

DiNezio, P. N., Clement, A. C., Vecchi, G. A., Soden, B. J., Kirtman, B. P., and Lee, S. K. (2009). Climate response of the equatorial Pacific to global warming. J. Climate, 22(18), 4873–4892. https://doi.org/10.1175/2009JCLI2982.1

Drenkard, E. J., and Karnauskas, K. B. (2014). Strengthening of the Pacific equatorial undercurrent in the SODA reanalysis: mechanisms, ocean dynamics, and implications. J. Climate, 27(6), 2405–2416. https://doi.org/10.1175/jcli-d-13-00359.1

Duan, W. S., Tian, B., and Xu, H. (2014). Simulations of two types of El Niño events by an optimal forcing vector approach. Climate Dyn., 43(5-6), 1677–1692. https://doi.org/10.1007/s00382-013-1993-4

Funk, C. C., and Hoell, A. (2015). The leading mode of observed and CMIP5 ENSO-residual sea surface temperatures and associated changes in Indo-Pacific climate. J. Climate, 28(11), 4309–4329. https://doi.org/10.1175/JCLI-D-14-00334.1

Jiang, N., and Zhu, C. W. (2018). Asymmetric changes of ENSO diversity modulated by the cold tongue mode under recent global warming. Geophys. Res. Lett., 45(22), 12506–512513. https://doi.org/10.1029/2018GL079494

Karnauskas, K. B., Seager R., Kaplan A., Kushnir Y., and Cane M. A. (2009). Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22(16), 4316–4321. https://doi.org/10.1175/2009JCLI2936.1

Karnauskas, K. B. (2013). Can we distinguish canonical El Niño from Modoki?. Geophys. Res. Lett., 40(19), 5246–5251. https://doi.org/10.1002/grl.51007

Kim, S. T., and Yu, J. Y. (2012). The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39(11), L11704. https://doi.org/10.1029/2012GL052006

Kug, J. S., Ham, Y. G., Lee, J. Y., and Jin, F. F. (2012). Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett., 7(3), 034002. https://doi.org/10.1088/1748-9326/7/3/034002

Lemmon, D. E., and Karnauskas, K. B. (2019). A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction. Climate Dyn., 52(12), 7511–7523. https://doi.org/10.1007/s00382-018-4194-3

L'Heureux, M. L., Lee, S., and Lyon, B. (2013). Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3(6), 571–576. https://doi.org/10.1038/nclimate1840

Li, G., and Xie, S. P. (2012). Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39(22), L22703. https://doi.org/10.1029/2012GL053777

Li, J. P., Ren, R. C., Qi, Y. Q., Wang, F. M., Lu, R. Y., Zhang, P. Q., Jiang, Z. H., Duan, W. S., Yu, F., and Yang, Y. Z. (2013). Progress in air-land-sea interactions in Asia and their role in global and Asian climate change. Chin. J. Atmos. Sci. (in Chinese) , 37(2), 518–538. https://doi.org/10.3878/j.issn.1006-9895.2012.12322

Li, Y., Li, J. P., Zhang, W. J., Zhao, X., Xie, F., and Zheng, F. (2015). Ocean dynamical processes associated with the tropical Pacific cold tongue mode. J. Geophys. Res. Oceans, 120(9), 6419–6435. https://doi.org/10.1002/2015JC010814

Li, Y., Li, J. P., Zhang, W. J., Chen, Q. L., Feng, J., Zheng, F., Wang, W., and Zhou, X. (2017). Impacts of the tropical Pacific cold tongue mode on ENSO diversity under global warming. J. Geophys. Res. Oceans, 122(11), 8524–8542. https://doi.org/10.1002/2017JC013052

Li, Y., Chen, Q. L., Liu, X. R., Li, J. P., Xing, N., Xie, F., Feng, J., Zhou, X., Cai, H. K., and Wang, Z. L. (2019). Long-term trend of the tropical Pacific trade winds under global warming and its causes. J. Geophys. Res. Oceans, 124(4), 2626–2640. https://doi.org/10.1029/2018JC014603

Lin, R. P., Zheng, F., and Dong, X. (2018). ENSO frequency asymmetry and the Pacific Decadal Oscillation in observations and 19 CMIP5 models. Adv. Atmos. Sci., 35(5), 495–506. https://doi.org/10.1007/s00376-017-7133-z

Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., … Smith, C. A. (2016). The Pacific decadal oscillation, revisited. J. Climate, 29(12), 4399–4427. https://doi.org/10.1175/JCLI-D-15-0508.1

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108(D14), 4407. https://doi.org/10.1029/2002JD002670

Ren, H. L., and Jin, F. F. (2013). Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26(17), 6506–6523. https://doi.org/10.1175/JCLI-D-12-00601.1

Ren, H. L., Jin, F. F., Stuecker, M. F., and Xie, R. H. (2013). ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan. Ser. II, 91(6), 835–842. https://doi.org/10.2151/jmsj.2013-608

Ren, H. L., Jin, F. F., Tian, B., and Scaife, A. A. (2016a). Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43(20), 10973–10979. https://doi.org/10.1002/2016GL071015

Ren, H. L., Zuo, J. Q., Jin, F.-F., and Stuecker, M. F. (2016b). ENSO and annual cycle interaction: the combination mode representation in CMIP5 models. Climate Dyn., 46(11-12), 3753–3765. https://doi.org/10.1007/s00382-015-2802-z

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc., 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Solomon, A., and Newman, M. (2012). Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Climate Change, 2(9), 691–699. https://doi.org/10.1038/nclimate1591

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc., 93(4), 485–498. https://doi.org/10.1175/bams-d-11-00094.1

Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In B. Raj, et al. (Eds.), Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology (pp. 345-381). Dordrecht: Springer. https://doi.org/10.1007/978-94-011-2546-8_20222

Yang, C. X., Giese, B. S., and Wu, L. X. (2014). Ocean dynamics and tropical Pacific climate change in ocean reanalyses and coupled climate models. J. Geophys. Res. Oceans, 119(10), 7066–7077. https://doi.org/10.1002/2014JC009979

Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., and Jin, F. F. (2009). El Niño in a changing climate. Nature, 461(7263), 511–514. https://doi.org/10.1038/nature08316

Zhang, W. J., Li, J. P., and Zhao, X. (2010). Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res. Oceans, 115(C12), C12042. https://doi.org/10.1029/2010jc006501

Zhang, W. J., and Jin, F. F. (2012). Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys. Res. Lett., 39(23), L23704. https://doi.org/10.1029/2012GL053588

Zhang, W. J., Jin, F. F., Zhao, J. X., Qi, L., and Ren, H. L. (2013). The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J. Climate, 26(21), 8392–8405. https://doi.org/10.1175/JCLI-D-12-00851.1

Zhang, W. J., Jin, F. F., and Turner, A. (2014). Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41(11), 4020–4026. https://doi.org/10.1002/2014GL060130

Zheng, F., Fang, X. H., Yu, J. Y., and Zhu, J. (2014). Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41(21), 7651–7657. https://doi.org/10.1002/2014GL062125

Zheng, F., Li, J. P., Feng, J., Li, Y. J., and Li, Y. (2015). Relative importance of the austral summer and autumn SAM in modulating Southern Hemisphere extratropical autumn SST. J. Climate, 28(20), 8003–8020. https://doi.org/10.1175/JCLI-D-15-0170.1

Zheng, F., Fang, X. H., Zhu, J., Yu, J. Y., and Li, X. C. (2016). Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43(24), 12560–12568. https://doi.org/10.1002/2016GL071636

Zheng, F., and Yu, J. Y. (2017). Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395–1403. https://doi.org/10.1007/s00376-017-6324-y

[1]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[2]

Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system, Earth and Planetary Physics, 3, 147-156. doi: 10.26464/epp2019018

[3]

Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031

[4]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[5]

Quan-Zhi Ye, 2018: A preliminary analysis of the Shangri-La Bolide on 2017 Oct 4, Earth and Planetary Physics, , 170-172. doi: 10.26464/epp2018017

[6]

ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007

[7]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[8]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

[9]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics. doi: 10.26464/epp2019050

[10]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[11]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[12]

WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models

Yang Li, QuanLiang Chen, JianPing Li, WenJun Zhang, MinHong Song, Wei Hua, HongKe Cai, XiaoFei Wu