Citation:
Jiang Yu, Jing Wang, Jun Cui,
2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372.
doi: 10.26464/epp2019037
2019, 3(4): 365-372. doi: 10.26464/epp2019037
Ring current proton scattering by low-frequency magnetosonic waves
1. | Space Science Institute, Macau University of Science and Technology, Macau, China |
2. | School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China |
3. | Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing 100012, China |
Magnetosonic (MS) waves are believed to have the ability to affect the dynamics of ring current protons both inside and outside the plasmasphere. However, previous studies have focused primarily on the effect of high-frequency MS waves (f > 20 Hz) on ring current protons. In this study, we investigate interactions between ring current protons and low-frequency MS waves (< 20 Hz) inside the plasmasphere. We find that low-frequency MS waves can effectively accelerate < 20 keV ring current protons on time scales from several hours to a day, and their scattering efficiency is comparable to that due to high-frequency MS waves (>20 Hz), from which we infer that omitting the effect of low-frequency MS waves will considerably underestimate proton depletion at middle pitch angles and proton enhancement at large pitch angles. Therefore, ring current proton modeling should take into account the effects of both low- and high-frequency MS waves.
Bortnik, J., and Thorne, R. M. (2010). Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. J. Geophys. Res. Space Phys., 115(A7), A07213. https://doi.org/10.1029/2010JA015283 |
Cao, J. B., Mazelle, C., Belmont, G., and Rème, H. (1995). Nongyrotropy of heavy newborn ions at comet Grigg-Skjellerup and corresponding instability. J. Geophys. Res. Space Phys., 100(A12), 23379–23388. https://doi.org/10.1029/95JA01915 |
Cao, J. B., Zhou, G. C., and Wang, X. Y. (1998a). Generalized ion ring instability driven by ions with a partial shell distribution. Geophys. Res. Lett., 25(9), 1499–1501. https://doi.org/10.1029/98GL01006 |
Cao, J. B., Mazelle, C., Belmont, G., and Rème, H. (1998b). Oblique ring instability driven by nongyrotropic ions: application to observations at comet Grigg-Skjellerup. J. Geophys. Res. Space Phys., 103(A2), 2055–2067. https://doi.org/10.1029/97JA02370 |
Cao, X., Ni, B. B., Liang, J., Xiang, Z., Wang, Q., Shi, R., Gu, X. D., Zhou, C., Zhao, Z. Y., .. Liu, J. (2016). Resonant scattering of central plasma sheet protons by multiband emic waves and resultant proton loss timescales. J. Geophys. Res. Space Phys., 121(2), 1219–1232. https://doi.org/10.1002/2015JA021933 |
Chen, L. J., Thorne, R. M., Jordanova, V. K., and Horne, R. B. (2010). Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res. Space Phys., 115(A11), A11222. https://doi.org/10.1029/2010JA015707 |
Chen, L. J., Thorne, R. M., Jordanova, V. K., Thomsen, M. F., and Horne, R. B. (2011). Magnetosonic wave instability analysis for proton ring distributions observed by the LANL magnetospheric plasma analyzer. J. Geophys. Res. Space Phys., 116(A3), A03223. https://doi.org/10.1029/2010JA016068 |
Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S. (1999). The terrestrial ring current: origin, formation, and decay. Rev. Geophys., 37(4), 407–438. https://doi.org/10.1029/1999RG900009 |
Ebihara, Y., and Miyoshi, Y. (2011). Dynamic inner magnetosphere: a tutorial and recent advances, In W. Liu (Ed.), The Dynamic Magnetosphere (Vol. 3, pp. 145-187). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0501-2_9222 |
Fu, H. S., Cao, J. B., Zhima, Z., Khotyaintsev, Y. V., Angelopoulos, V., Santolík, O., Omura, Y., Taubenschuss, U., Chen, L., and Huang, S. Y. (2014). First observation of rising-tone magnetosonic waves. Geophys. Res. Lett., 41(21), 7419–7426. https://doi.org/10.1002/2014GL061867 |
Fu, S., Ni, B. B., Li, J. X., Zhou, C., Gu, X. D., Huang, S. Y., Zhang, H., Ge, Y. S., and Cao X. (2016). Interactions between magnetosonic waves and ring current protons: gyroaveraged test particle simulations. J. Geophys. Res. Space Phys., 121(9), 8537–8553. https://doi.org/10.1002/2016JA023117 |
Glauert, S. A., and Horne, R. B. (2005). Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. Space Phys., 110(A4), A04206. https://doi.org/10.1029/2004JA010851 |
Horne, R. B., Wheeler, G. V., and Alleyne, H. S. C. K. (2000). Proton and electron heating by radially propagating fast magnetosonic waves. J. Geophys. Res. Space Phys., 105(A12), 27597–27610. https://doi.org/10.1029/2000JA000018 |
Horne, R. B., Thorne, R. M., Glauert, S. A., Meredith, N. P., Pokhotelov, D., and Santolík, O. (2007). Electron acceleration in the van Allen radiation belts by fast magnetosonic waves. Geophys. Res. Lett., 34(17), L17107. https://doi.org/10.1029/2007GL030267 |
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., and Wygant, J. R. (2015). Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen Probes. J. Geophys. Res. Space Phys., 120(2), 904–914. https://doi.org/10.1002/2014JA020857 |
Li, J. X., Ni, B. B., Xie, L., Pu, Z. Y., Bortnik, J., Thorne, R. M., Chen, L. J., Ma, Q. L., Fu, S. Y., … Guo, R. L. (2014). Interactions between magnetosonic waves and radiation belt electrons: comparisons of quasi-linear calculations with test particle simulations. Geophys. Res. Lett., 41(14), 4828–4834. https://doi.org/10.1002/2014GL060461 |
Li, L. Y., Yu, J., Cao, J. B., and Yuan, Z. G. (2016). Compression-amplified emic waves and their effects on relativistic electrons. Phys. Plasmas, 23(6), 062116. https://doi.org/10.1063/1.4953899 |
Li, L. Y., Yu, J., Cao, J. B., Yang, J. Y., Li, X., Baker, D. N., Reeves, G. D., and Spence, H. (2017a). Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J. Geophys. Res. Space Phys., 122(5), 5431–5448. https://doi.org/10.1002/2016JA023634 |
Li, L. Y., Liu, B., Yu, J., and Cao, J. B. (2017b). The rapid responses of magnetosonic waves to the compression and expansion of Earth’s magnetosphere. Geophys. Res. Lett., 44(22), 11239–11247. https://doi.org/10.1002/2017GL075649 |
Liu, B., Li, L. Y., Yu, J., and Cao, J. B. (2018). The effect of hot protons on magnetosonic waves inside and outside the plasmapause: new observations and theoretic results. J. Geophys. Res. Space Phys., 123(1), 653–664. https://doi.org/10.1002/2017JA024676 |
Liu, K. J., Gary, S. P., and Winske, D. (2011). Excitation of magnetosonic waves in the terrestrial magnetosphere: particle-in-cell simulations. J. Geophys. Res. Space Phys., 116(A7), A07212. https://doi.org/10.1029/2010JA016372 |
Liu, X., Chen, L. J., Yang, L. X., Xia, Z. Y., and Malaspina, D. M. (2018). One-dimensional full wave simulation of equatorial magnetosonic wave propagation in an inhomogeneous magnetosphere. J. Geophys. Res. Space Phys., 123(1), 587–599. https://doi.org/10.1002/2017JA024336 |
Lyons, L. R. (1974). Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves. J. Plasma Phys., 12(3), 417–432. https://doi.org/10.1017/S002237780002537X |
Meredith, N. P., Horne, R. B., and Anderson, R. R. (2008). Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere. J. Geophys. Res. Space Phys., 113(A6), A06213. https://doi.org/10.1029/2007JA012975 |
Ni, B. B., Cao, X., Zou, Z. Y., Zhou, C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., … Xie, L. (2015). Resonant scattering of outer zone relativistic electrons by multiband emic waves and resultant electron loss time scales. J. Geophys. Res. Space Phys., 120(9), 7357–7373. https://doi.org/10.1002/2015JA021466 |
Ni, B. B., Hua, M., Zhou, R. X., Yi, J., and Fu, S. (2017). Competition between outer zone electron scattering by plasmaspheric hiss and magnetosonic waves. Geophys. Res. Lett., 44(8), 3465–3474. https://doi.org/10.1002/2017GL072989 |
Ni, B. B., Zou, Z. Y., Fu, S., Cao, X., Gu, X. D., and Xiang, Z. (2018). Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves. Geophys. Res. Lett., 45(3), 1228–1236. https://doi.org/10.1002/2017GL075788 |
Perraut, S., Roux, A., Robert, P., Gendrin, R., Sauvaud, J. A., Bosqued, J. M., Kremser, G., and Korth, A. (1982). A systematic study of ULF waves above F H+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions. J. Geophys. Res. Space Phys., 87(A8), 6219–6236. https://doi.org/10.1029/JA087iA08p06219 |
Posch, J. L., Engebretson, M. J., Olson, C. N., Thaller, S. A., Breneman, A. W., Wygant, J. R., Boardsen, S. A., Kletzing, C. A., Smith, C. W., and Reeves, G. D. (2015). Low-harmonic magnetosonic waves observed by the Van Allen Probes. J. Geophys. Res. Space Phys., 120(8), 6230–6257. https://doi.org/10.1002/2015JA021179 |
Russell, C. T., Holzer, R. E., and Smith, E. J. (1970). OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial noise. J. Geophys. Res., 75(4), 755–768. https://doi.org/10.1029/JA075i004p00755 |
Santolík, O., Pickett, J. S., Gurnett, D. A., Maksimovic, M., and Cornilleau-Wehrlin, N. (2002). Spatiotemporal variability and propagation of equatorial noise observed by Cluster. J. Geophys. Res. Space Phys., 107(A12), 1495. https://doi.org/10.1029/2001JA009159 |
Santolík, O., Parrot, M., and Lefeuvre, F. (2003). Singular value decomposition methods for wave propagation analysis. Radio Sci., 38(1), 1010. https://doi.org/10.1029/2000RS002523 |
Shprits, Y. Y. (2009). Potential waves for pitch-angle scattering of near-equatorially mirroring energetic electrons due to the violation of the second adiabatic invariant. Geophys. Res. Lett., 36(12), L12106. https://doi.org/10.1029/2009GL038322 |
Stix, T. H. (1962). The Theory of Plasma Waves. New York: McGraw-Hill.222 |
Su, Z. P., Wang, G., Liu, N. G., Zheng, H. N., Wang, Y. M., and Wang, S. (2017). Direct observation of generation and propagation of magnetosonic waves following substorm injection. Geophys. Res. Lett., 44(15), 7587–7597. https://doi.org/10.1002/2017GL074362 |
Tao, X., and Li, X. (2016). Theoretical bounce resonance diffusion coefficient for waves generated near the equatorial plane. Geophys. Res. Lett., 43(14), 7389–7397. https://doi.org/10.1002/2016GL070139 |
Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024 |
Wang, Z.Q., Zhai, H., Gao, Z. X., and Huang, C. Y. (2017a). Gyrophase bunched ions in the plasma sheet. Adv. Space Res., 59(1), 274–282. https://doi.org/10.1016/j.asr.2016.08.003 |
Wang, Z. Q., Pan, Z. R., Zhai, H., Gao, Z. X., Sun, K., & Zhang, Y. S. (2017b). The nonlinear interactions between O+ ions and oxygen band EMIC waves. J. Geophys. Res. Space Phys., 122(7), 7097–7109. https://doi.org/10.1002/2017JA024113 |
Wang, Z. Q., Zhai, H., and Gao, Z. X. (2017c). The effects of hydrogen band EMIC waves on ring current H+ ions. Geophys. Res. Lett., 44(23), 11722–11728. https://doi.org/10.1002/2017GL075843 |
Xiao, F. L., Zhou, Q. H., He, Z. G., Yang, C., He, Y. H., and Tang, L. J. (2013). Magnetosonic wave instability by proton ring distributions: simultaneous data and modeling. J. Geophys. Res. Space Phys., 118(7), 4053–4058. https://doi.org/10.1002/jgra.50401 |
Xiao, F. L., Zong, Q. G., Wang, Y. F., He, Z. G., Su, Z. P., Yang, C., and Zhou, Q. H. (2014). Generation of proton aurora by magnetosonic waves. Sci. Rep., 4, 5190. https://doi.org/10.1038/srep05190 |
Xiao, F. L., Yang, C., Su, Z. P., Zhou, Q. H., He, Z. G., He, Y. H., Baker, D. N., Spence, H. E., Funsten, H. O., and Blake, J. B. (2015). Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat. Commun., 6, 8590. https://doi.org/10.1038/ncomms9590 |
Yu, J., Li, L. Y., Cao, J. B., Yuan, Z. G., Reeves, G. D., Baker, D. N., Blake, J. B., and Spence, H. (2015). Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J. Geophys. Res. Space Phys., 120(12), 10275–10288. https://doi.org/10.1002/2015JA021460 |
Yu, J., Li, L. Y., Cao, J. B., Chen, L., Wang, J., and Yang, J. (2017). Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. J. Geophys. Res. Space Phys., 122(4), 4156–4167. https://doi.org/10.1002/2016JA023372 |
Yu, J., Li, L. Y., Cui, J., Cao J. B., and Wang, J. (2019). Effect of low-harmonic magnetosonic waves on the radiation belt electrons inside the Plasmasphere. J. Geophys. Res. Space Phys.. https://doi.org/10.1029/2018JA026328 |
Yuan, Z. G., Deng, X. H., Lin, X., Pang, Y., Zhou, M., Décréau, P. M. E., Trotignon, J. G., Lucek, E., Frey, H. U., and Wang, J. F. (2010). Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites. Geophys. Res. Lett., 37(7), L07108. https://doi.org/10.1029/2010GL042711 |
Yuan, Z. G., Yu, X. D., Huang, S. Y., Wang, D. D., and Funsten, H. O. (2017). In situ observations of magnetosonic waves modulated by background plasma density. Geophys. Res. Lett., 44(15), 7628–7633. https://doi.org/10.1002/2017GL074681 |
Zhima, Z., Chen, L. J., Fu, H. S., Cao, J. B., Horne, R. B., and Reeves, G. (2015). Observations of discrete magnetosonic waves off the magnetic equator. Geophys. Res. Lett., 42(22), 9694–9701. https://doi.org/10.1002/2015GL066255 |
[1] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[2] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[3] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[4] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[5] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[6] |
XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005 |
[7] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[8] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[9] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[10] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[11] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[12] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[13] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[14] |
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039 |
[15] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[16] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[17] |
ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069 |
[18] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[19] |
JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034 |
[20] |
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)