Citation:
HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen,
2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313.
http://doi.org/10.26464/epp2019032
2019, 3(4): 305-313. doi: 10.26464/epp2019032
Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves
1. | School of Earth and Space Sciences, Peking University, Beijing 100871, China |
2. | Department of Physics, University of Alberta, Edmonton, Alberta T6G2J1, Canada |
3. | School of Space Science and Physics, Shandong University, Weihai 264209, China |
4. | Center for Space Physics, Boston University, Boston, Massachusetts 02215, USA |
In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a recurrence time of a few minutes. The validation of this scenario requires spacecraft observations of ultra-low-frequency hydromagnetic waves in the magnetosphere and simultaneous observations of poleward-moving auroral arcs near the spacecraft footprints. Here we present the first observational evidence from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission and the conjugated all-sky imager to support the scenario that standing hydromagnetic waves can generate the quasi-periodic appearance of poleward-moving auroral arcs. In this specific event, the observed waves were toroidal branches of the standing hydromagnetic waves, which were excited by a pulse in the solar wind dynamic pressure. Multi-spacecraft measurements from THEMIS also suggest higher wave frequencies at lower L shells (consistent with the distribution of magnetic field line eigenfrequencies), which indicates that the phase difference across latitudes would increase with time. As time proceeds, the enlarged phase difference corresponds to a lower propagation speed of the auroral arcs, which agrees very well with the ground-based optical data.
Angelopoulos, V. (2008). The THEMIS mission. Space Sci. Rev., 141(1-4), 5–34. https://doi.org/10.1007/s11214-008-9336-1 |
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., … Wiedemann, M. (2008). The THEMIS fluxgate magnetometer. Space Sci. Rev., 141(1-4), 235–264. https://doi.org/10.1007/s11214-008-9365-9 |
Baker, K. B., and Wing, S. (1989). A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res., 94(A7), 9139–9143. https://doi.org/10.1029/JA094iA07p09139 |
Chen, L., and Hasegawa, A. (1974). A theory of long-period magnetic pulsations: 2. Impulse excitation of surface eigenmode. J. Geophys. Res., 79(7), 1033–1037. https://doi.org/10.1029/JA079i007p01033 |
Farrell, W. M., Thompson, R. F., Lepping, R. P., and Byrnes, J. B. (1995). A method of calibrating magnetometers on a spinning spacecraft. IEEE Trans. Magn., 31(2), 966–972. https://doi.org/10.1109/20.364770 |
Gloeckler, G., Balsiger, H., Bürgi, A., Bochsler, P., Fisk, L. A., Galvin, A. B., Geiss, J., Gliem, F., Hamilton, D. C., … Wilken, B. (1995). The solar WIND and suprathermal ion composition investigation on the wind spacecraft. Space Sci. Rev., 71(1-4), 79–124. https://doi.org/10.1007/BF00751327 |
Greenwald, R. A., and Walker, A. D. M. (1980). Energetics of long period resonant hydromagnetic waves. Geophys. Res. Lett., 7(10), 745–748. https://doi.org/10.1029/GL007i010p00745 |
Hartinger, M., Angelopoulos, V., Moldwin, M. B., Glassmeier, K. H., and Nishimura, Y. (2011). Global energy transfer during a magnetospheric field line resonance. Geophys. Res. Lett., 38(12), L12101. https://doi.org/10.1029/2011GL047846 |
Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res., 81(28), 5083–5090. https://doi.org/10.1029/JA081i028p05083 |
Kivelson, M. G., and Southwood, D. J. (1985). Resonant ULF waves: a new interpretation. Geophys. Res. Lett., 12(1), 49–52. https://doi.org/10.1029/GL012i001p00049 |
Kozlovsky, A., and Kangas, J. (2002). Motion and origin of noon high-latitude poleward moving auroral arcs on closed magnetic field lines. J. Geophys. Res., 107(A2), 1017. https://doi.org/10.1029/2001JA900145 |
Lyatsky, W., Elphinstone, R. D., Pao, Q., and Cogger, L. L. (1999). Field line resonance interference model for multiple auroral arc generation. J. Geophys. Res., 104(A1), 263–268. https://doi.org/10.1029/1998JA900027 |
Mann, I. R. (1997). On the internal radial structure of field line resonances. J. Geophys. Res., 102(A12), 27109–27119. https://doi.org/10.1029/97JA02385 |
McFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., and Angelopoulos, V. (2008). The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev., 141(1-4), 277–302. https://doi.org/10.1007/s11214-008-9440-2 |
Milan, S. E., Yeoman, T. K., Lester, M., Moen, J., and Sandholt, P. E. (1999). Post-noon two-minute period pulsating aurora and their relationship to the dayside convection pattern. Ann. Geophys., 17(7), 877–891. https://doi.org/10.1007/s00585-999-0877-8 |
Milan, S. E., Sato, N., Ejiri, M., and Moen, J. (2001). Auroral forms and the field-aligned current structure associated with field line resonances. J. Geophys. Res., 106(A11), 25825–25833. https://doi.org/10.1029/2001JA900077 |
Rae, I. J., Donovan, E. F., Mann, I. R., Fenrich, F. R., Watt, C. E. J., Milling, D. K., Lester, M., Lavraud, B., Wild, J. A., … Balogh, A. (2005). Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res., 110(A12), A12211. https://doi.org/10.1029/2005JA011007 |
Rankin, R., Kabin, K., Lu, J. Y., Mann, I. R., Marchand, R., Rae, I. J., Tikhonchuk, V. T., and Donovan, E. F. (2005). Magnetospheric field-line resonances: ground-based observations and modeling. J. Geophys. Res., 110(A10), A10S09. https://doi.org/10.1029/2004JA010919 |
Rankin, R., Kabin, K., and Marchand, R. (2006). Alfvénic field line resonances in arbitrary magnetic field topology. Adv. Space Res., 38(8), 1720–1729. https://doi.org/10.1016/j.asr.2005.09.034 |
Samson, J. C., Harrold, B. G., Ruohoniemi, J. M., Greenwald, R. A., and Walker, A. D. M. (1992). Field line resonances associated with MHD waveguides in the magnetosphere. Geophys. Res. Lett., 19(5), 441–444. https://doi.org/10.1029/92GL00116 |
Samson, J. C., Cogger, L. L., and Pao, Q. (1996). Observations of field line resonances, auroral arcs, and auroral vortex structures. J. Geophys. Res., 101(A8), 17373–17383. https://doi.org/10.1029/96JA01086 |
Samson, J. C., Rankin, R., and Tikhonchuk, V. T. (2003). Optical signatures of auroral arcs produced by field line resonances: comparison with satellite observations and modeling. Ann. Geophys., 21(4), 933–945. https://doi.org/10.5194/angeo-21-933-2003 |
Sarris, T. E., Liu, W., Kabin, K., Li, X., Elkington, S. R., Ergun, R., Rankin, R., Angelopoulos, V., Bonnell, J., … Auster, U. (2009). Characterization of ULF pulsations by THEMIS. Geophys. Res. Lett., 36(4), L04104. https://doi.org/10.1029/2008GL036732 |
Sarris, T. E., Liu, W., Li, X., Kabin, K., Talaat, E. R., Rankin, R., Angelopoulos, V., Bonnell, J., and Glassmeier, K. H. (2010). THEMIS observations of the spatial extent and pressure-pulse excitation of field line resonances. Geophys. Res. Lett., 37(15), L15104. https://doi.org/10.1029/2010GL044125 |
Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22(3), 483–491. https://doi.org/10.1016/0032-0633(74)90078-6 |
Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., … Wahlund, J. E. (2000). Small scale Alfvénic structure in the aurora. Space Sci. Rev., 92(3-4), 423–533. https://doi.org/10.1023/A:1005207202143 |
Tsyganenko, N. A., and Stern, D. P. (1996). Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res., 101(A12), 27187–27198. https://doi.org/10.1029/96JA02735 |
Zhou, X. Z., Wang, Z. H., Zong, Q. G., Rankin, R., Kivelson, M. G., Chen, X. R., Blake, J. B., Wygant, J. R., and Kletzing, C. A. (2016). Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations. J. Geophys. Res., 121(4), 3254–3263. https://doi.org/10.1002/2016JA022447 |
Zong, Q. G., Rankin, R., and Zhou, X. Z. (2017). The interaction of ultra-low-frequency Pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Mod. Plasma Phys., 1, 10. https://doi.org/10.1007/s41614-017-0011-4 |
[1] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[2] |
Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051 |
[3] |
A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006 |
[4] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[5] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[6] |
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021 |
[7] |
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039 |
[8] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[9] |
JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024 |
[10] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[11] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[12] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[13] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[14] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[15] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[16] |
Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034 |
[17] |
MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova, 2022: Effects of polarization-reversed EMIC waves on the ring current dynamics, Earth and Planetary Physics. doi: 10.26464/epp2022037 |
[18] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[19] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[20] |
YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)