Citation:
FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong,
2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211.
http://doi.org/10.26464/epp2019022
2019, 3(3): 204-211. doi: 10.26464/epp2019022
Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001
1. | School of Earth and Space Sciences, Peking University, Beijing 100871, China |
2. | Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. |
Cluster satellites observed three successive outflowing ion beams on 28 March, 2001. It is generally accepted that these ion beams, composed of H+, He+, and O+ ions, with three inverted-V structures in their energy spectra, are produced by acceleration through U-shaped potential structures. By eliminating the background ion population and employing Maxwelling fitting, we find that ions coming from the center of the potential structure have higher temperature than those from the flanks. Higher temperature of O+ and He+ compared to that of H+ indicates that heavy ions are preferentially heated; we further infer that the heating efficiencies of O+ and He+ ions differ between the center and edges of the U-shaped potential structures. Estimation based on pitch angle observations shows that heating may also occur at an altitude above the upper boundary of the auroral acceleration region (AAR), where these beams are generally thought to be formed.
Balogh, A., Dunlop, M. W., Cowley, S. W. H., Southwood, D. J., Thomlinson, J. G., Glassmeier, K. H., Musmann, G., Lühr, H., Buchert, S., … Kivelson, M. G. (1997). The cluster magnetic field investigation. Space Sci. Rev., 79(1-2), 65–91. https://doi.org/10.1023/A:1004970907748 |
Block, L. P. (1972). Potential double layers in the ionosphere. Cosmic Electrodyn., 3, 349. |
Block, L. P., and Fälthammar, C. G. (1990). The role of magnetic-field-aligned electric fields in auroral acceleration. J. Geophys. Res. Space Phys., 95(A5), 5877–5888. https://doi.org/10.1029/JA095iA05p05877 |
Bonnell, J., Kintner, P., Wahlund, J. E., Lynch, K., and Arnoldy, R. (1996). Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration. Geophys. Res. Lett., 23(23), 3297–3300. https://doi.org/10.1029/96GL03238 |
Chang, T., Crew, G. B., Hershkowitz, N., Jasperse, J. R., Retterer, J. M., and Winningham, J. D. (1986). Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves. Geophys. Res. Lett., 13(7), 636–639. https://doi.org/10.1029/GL013i007p00636 |
Chiu, Y. T., and Schulz, M. (1978). Self-consistent particle and parallel electrostatic field distributions in the magnetospheric-ionospheric auroral region. J. Geophys. Res. Space Phys., 83(A2), 629–642. https://doi.org/10.1029/JA083iA02p00629 |
Collin, H. L., Peterson, W. K., and Shelley, E. G. (1987). Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions. J. Geophys. Res. Space Phys., 92(A5), 4757–4762. https://doi.org/10.1029/JA092iA05p04757 |
Cornilleau-Wehrlin, N., Chanteur, G., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Villedary, C., Canu, P., Maksimovic, M., … Le Contel, O. (2003). First results obtained by the Cluster STAFF experiment. Ann. Geophys., 21(2), 437–456. https://doi.org/10.5194/angeo-21-437-2003 |
Cui, Y. B., Fu, S. Y., and Parks, G. K. (2014). Heating of ionospheric ion beams in inverted-V structures. Geophys. Res. Lett., 41(11), 3752–3758. https://doi.org/10.1002/2014GL060524 |
Cui, Y. B., Fu, S. Y., Zong, Q. G., Xie, L., Sun, W. J., Zhao, D., Wu, T., and Parks, G. (2016). Altitude of the upper boundary of AAR based on observations of ion beams in inverted-V structures: A case study. Sci. China Earth Sci., 59(7), 1489–1497. https://doi.org/10.1007/s11430-016-0019-3 |
Echer, E., Korth, A., Zong, Q. G., Fraünz, M., Gonzalez, W. D., Guarnieri, F. L., Fu, S. Y., and Reme, H. (2008). Cluster observations of O+ escape in the magnetotail due to shock compression effects during the initial phase of the magnetic storm on 17 August 2001. J. Geophys. Res. Space Phys., 113(A5), A05209. https://doi.org/10.1029/2007JA012624 |
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Roth, I., … Kistler, L. (1998). FAST satellite observations of large-amplitude solitary structures. Geophys. Res. Lett., 25(12), 2041–2044. https://doi.org/10.1029/98GL00636 |
Ergun, R. E., Andersson, L., Main, D., Su, Y. J., Newman, D. L., Goldman, M. V., Carlson, C. W., Hull, A. J., McFadden, J. P., and Mozer, F. S. (2004). Auroral particle acceleration by strong double layers: The upward current region. J. Geophys. Res. Space Phys., 109(A12), A12220. https://doi.org/10.1029/2004JA010545 |
Erlandson, R. E., Zanetti, L. J., Acuña, M. H., Eriksson, A. I., Eliasson, L., Boehm, M. H., and Blomberg, L. G. (1994). Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines. Geophys. Res. Lett., 21(17), 1855–1858. https://doi.org/10.1029/94GL01363 |
Escoubet, C. P., Fehringer, M., and Goldstein, M. (2001). Introduction: The Cluster mission. Ann. Geophys., 19(10-12), 1197–1200. https://doi.org/10.5194/angeo-19-1197-2001 |
Gorney, D. J., Clarke, A., Croley, D., Fennell, J., Luhmann, J., and Mizera, P. (1981). The distribution of ion beams and conics below 8000 km. J. Geophys. Res. Space Phys., 86(A1), 83–89. https://doi.org/10.1029/JA086iA01p00083 |
Hudson, M. K., and Mozer, F. S. (1978). Electrostatic shocks, double layers, and anomalous resistivity in the magnetosphere. Geophys. Res. Lett., 5, 131. https://doi.org/10.1029/GL005i002p00131 |
Kintner, P. M., Vago, J., Chesney, S., Arnoldy, R. L., Lynch, K. A., Pollock, C. J., and Moore, T. E. (1992). Localized lower hybrid acceleration of ionospheric plasma. Phys. Rev. Lett., 68(16), 2448–2451. https://doi.org/10.1103/PhysRevLett.68.2448 |
Knudsen, D. J., Whalen, B. A., Abe, T., and Yau, A. (1994). Temporal evolution and spatial dispersion of ion conics: evidence for a polar cusp heating wall. In J. L. Burch, et al. (Eds.), Solar System Plasmas in Space and Time (pp. 163-169). Washington DC: American Geophysical Union. https://doi.org/10.1029/GM084p0163222 |
Korth, A., Fränz, M., Zong, Q. G., Fritz, T. A., Sauvaud, J. A., Rème, H., Dandouras, I., Friedel, R., Mouikis, C. G., … Daly, P. W. (2004). Ion injections at auroral latitude during the March 31, 2001 magnetic storm observed by Cluster. Geophys. Res. Lett., 31(20), L20806. https://doi.org/10.1029/2004GL020356 |
Kronberg, E. A., Ashour-Abdalla, M., Dandouras, I., Delcourt, D. C., Grigorenko, E. E., Kistler, L. M., Kuzichev, I. V., Liao, J., Maggiolo, R., … Zelenyi, L. M. (2014). Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models. Space Sci. Rev., 184(1-4), 173–235. https://doi.org/10.1007/s11214-014-0104-0 |
Lu, G., Reiff, P. H., Moore, T. E., and Heelis, R. A. (1992). Upflowing ionospheric ions in the auroral region. Journal of Geophysical Research: Space Physics, 97(A11), 16855–16863. https://doi.org/10.1029/92JA01435 |
Lund, E. J., Möbius, E., Tang, L., Kistler, L. M., Popecki, M. A., Klumpar, D. M., Peterson, W. K., Shelley, E. G., Klecker, B., … Pfaff R. F. (1998). FAST observations of preferentially accelerated He+ in association with auroral electromagnetic ion cyclotron waves. Geophys. Res. Lett., 25(12), 2049–2052. https://doi.org/10.1029/98GL00304 |
Lund, E. J., Möbius, E., Klumpar, D. M., Kistler, L. M., Popecki, M. A., Klecker, B., Ergun, R. E., McFadden, J. P., Carlson, C. W., and Strangeway, R. J. (1999). Direct comparison of transverse ion acceleration mechanisms in the auroral region at solar minimum. J. Geophys. Res. Space Phys., 104(A10), 22801–22805. https://doi.org/10.1029/1999JA900265 |
Lynch, K. A., Arnoldy, R. L., Kintner, P. M., and Bonnell, J. (1996). The AMICIST auroral sounding rocket: A comparison of transverse ion acceleration mechanisms. Geophys. Res. Lett., 23(23), 3293–3296. https://doi.org/10.1029/96GL02688 |
Lynch, K. A., Arnoldy, R. L., Kintner, P. M., Schuck, P., Bonnell, J. W., and Coffey, V. (1999). Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations. J. Geophys. Res. Space Phys., 104(A12), 28515–28534. https://doi.org/10.1029/1999JA900289 |
Marklund, G. T. (2009). On the ionospheric coupling of auroral electric fields. Nonlin. Processes Geophys., 16(2), 365–372. https://doi.org/10.5194/npg-16-365-2009 |
Marklund, G. T., Sadeghi, S., Karlsson, T., Lindqvist, P. A., Nilsson, H., Forsyth, C., Fazakerley, A., Lucek, E. A., and Pickett, J. (2011). Altitude distribution of the auroral acceleration potential determined from cluster satellite data at different heights. Phys. Rev. Lett., 106(5), 055002. https://doi.org/10.1103/PhysRevLett.106.055002 |
Möbius, E., Tang, L., Kistler, L. M., Popecki, M., Lund, E. J., Klumpar, D., Peterson, W., Shelley, E. G., Klecker, B., … Pfaff, R. (1998). Species dependent energies in upward directed ion beams over auroral arcs as observed with FAST TEAMS. Geophys. Res. Lett., 25(12), 2029–2032. https://doi.org/10.1029/98GL00381 |
Moore, T. E., Lundin, R., Alcayde, D., André, M., Ganguli, S. B., Temerin, M., and Yau, A. (1999). Source processes in the high-latitude ionosphere. Space Sci. Rev., 88(1-2), 7–84. https://doi.org/10.1023/A:1005299616446 |
Morioka, A., Miyoshi, Y., Tsuchiya, F., Misawa, H., Yumoto, K., Parks, G. K., Anderson, R. R., Menietti, J. D., and Honary, F. (2009). Vertical evolution of auroral acceleration at substorm onset. Ann. Geophys., 27(2), 525–535. https://doi.org/10.5194/angeo-27-525-2009 |
Norqvist, P., André, M., Eliasson, L., Eriksson, A. I., Blomberg, L., Lühr, H., and Clemmons, J. H. (1996). Ion cyclotron heating in the dayside magnetosphere. J. Geophys. Res. Space Phys., 101(A6), 13179–13193. https://doi.org/10.1029/95JA03596 |
Paschmann, G., Haaland, S., and Treumann, R. (2003). Auroral Plasma Physics. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-1086-3222 |
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., … Scudder, J. (2001). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19(10-12), 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001 |
Sadeghi, S., Marklund, G. T., Karlsson, T., Lindqvist, P. A., Nilsson, H., Marghitu, O.,.. Lucek, E. A. (2011). Spatiotemporal features of the auroral acceleration region as observed by Cluster. J Geophys Res: Space Physics, 116(A1). https://doi.org/10.1029/2011JA016505 |
Shelley, E. G., Sharp, R. D., and Johnson, R. G. (1976). Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett., 3(11), 654–656. https://doi.org/10.1029/GL003i011p00654 |
Song, Y., and Lysak, R. L. (2001). Towards a new paradigm: from a quasi-steady description to a dynamical description of the magnetosphere. Space Sci. Rev., 95(1-2), 273–292. https://doi.org/10.1023/A:1005288420253 |
Temerin, M., Cerny, K., Lotko, W., and Mozer, F. S. (1982). Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett., 48(17), 1175–1179. https://doi.org/10.1103/PhysRevLett.48.1175 |
Temerin, M., and Roth, I. (1986). Ion heating by waves with frequencies below the ion gyrofrequency. Geophys. Res. Lett., 13(11), 1109–1112. https://doi.org/10.1029/GL013i011p01109 |
Wahlund, J. E., Eriksson, A. I., Holback, B., Boehm, M. H., Bonnell, J., Kintner, P. M., Seyler, C. E., Clemmons, J. H., Eliasson, L., … Zanetti, L. J. (1998). Broadband ELF plasma emission during auroral energization: 1.Slow ion acoustic waves. J. Geophys. Res. Space Phys., 103(A3), 4343–4375. https://doi.org/10.1029/97JA02008 |
Winglee, R. M., Dusenbery, P. B., Collin, H. L., Lin, C. S., and Persoon, A. M. (1989). Simulations and observations of heating of auroral ion beams. J. Geophys. Res. Space Phys., 94(A7), 8943–8965. https://doi.org/10.1029/JA094iA07p08943 |
Zong, Q. G., Zhang, H., Fu, S. Y., Wang, Y. F., Pu, Z. Y., Korth, A., Daly, P. W., and Fritz, T. A. (2008). Ionospheric oxygen ions dominant bursty bulk flows: Cluster and Double Star observations. J. Geophys. Res. Space Phys., 113(A7), A07S23. https://doi.org/10.1029/2007JA012764 |
[1] |
Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032 |
[2] |
YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015 |
[3] |
Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020 |
[4] |
HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019 |
[5] |
Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics, 4, 588-597. doi: 10.26464/epp2020068 |
[6] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[7] |
Safi Ullah, HaiLong Li, Abdur Rauf, Lin Meng, Bin Wang, ShuCan Ge, MaoYan Wang, 2021: Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region, Earth and Planetary Physics, 5, 196-204. doi: 10.26464/epp2021016 |
[8] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
[9] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[10] |
ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035 |
[11] |
MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova, 2022: Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics, Earth and Planetary Physics, 6, 329-338. doi: 10.26464/epp2022037 |
[12] |
Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002 |
[13] |
Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038 |
[14] |
Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042 |
[15] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[16] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[17] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[18] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[19] |
Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016 |
[20] |
RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)