Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

2019, 3(3): 183-189. doi: 10.26464/epp2019020


Species-dependent ion escape on Titan


State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China


Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China


School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China


Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Jun Cui,

Received Date: 2018-12-05
Web Publishing Date: 2019-05-01

Cassini observations over the past ten years have revealed that Titan possesses a chemically complex ionosphere. In this study, we investigate the relative contributions of different ion species to the total ion escape on Titan, by dividing all ion species probed by the Cassini Ion Neutral Mass Spectrometer (INMS) into six groups according to their mass-to-charge ratios (M/Z). For the three lightest ion groups, with characteristic M/Z of 22, 41, and 52 daltons , the observed scale heights tend to be lower than the scale heights predicted by assuming diffusive equilibrium; for the three heavier groups, observed and predicted scale heights are in general agreement, implying that most ion escape from Titan is by relatively light species, with M/Z < 60 daltons. A diffusion model is constructed to describe the density distribution of each ion group in regions where the effect of ionospheric chemistry could be neglected. The data model comparison predicts an optimal total ion escape rate of 3.1×1024 s–1, of which more than 99% is contributed by relatively light ions with M/Z < 32 daltons.

Key words: Titan, planetary ionospheres, atmospheric escape

Bird, M. K., Dutta-Roy, R., Asmar, S. W., and Rebold, T. A. (1997). Detection of Titan's ionosphere from voyager 1 radio occultation observations. Icarus, 130(2), 426–436.

Brain, D. A., Bagenal, F., Ma, Y. J., Nilsson, H., and Stenberg Wieser, G. (2016). Atmospheric escape from unmagnetized bodies. J. Geophys. Res. Planets, 121(12), 2364–2385.

Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., Waite J. H. Jr., and Sittler, E. C. Jr. (2007). Discovery of heavy negative ions in Titan's ionosphere. Geophys. Res. Lett., 34(22), L22103.

Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., Young, D. T., Crary, F. J., and Waite, J. H. (2009). Heavy negative ions in Titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., 57(14-15), 1866–1871.

Coates, A. J., Wellbrock, A., Lewis, G. R., Arridge, C. S., Crary, F. J., Young, D. T., Thomsen, M. F., Reisenfeld, D. B., Sittler, E. C. Jr., … Jones, G. H. (2012). Cassini in Titan’s tail: CAPS observations of plasma escape. J. Geophys. Res. Space Phys., 117(A5), A05324.

Crary, F. J., Magee, B. A., Mandt, K., Waite, J. H., Westlake, J., and Young, D. T. (2009). Heavy ions, temperatures and winds in Titan’s ionosphere: combined Cassini CAPS and INMS observations. Planet. Space Sci., 57(14-15), 1847–1856.

Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J. E., Waite, J. H. Jr., Ledvina, S. A., Niemann, H. B., Yelle, R. V., Kasprzak, W. T., … Coates, A. J. (2005). Titan’s ionosphere: model comparisons with Cassini Ta data. Geophys. Res. Lett., 32(12), L12108.

Cravens, T. E., Robertson, I. P., Waite, J. H. Jr., Yelle, R. V., Kasprzak, W. T., Keller, C. N., Ledvina, S. A., Niemann, H. B., Luhmann, J. G., … Vuitton, V. (2006). Composition of Titan's ionosphere. Geophys. Res. Lett., 33(7), L07105.

Cravens, T. E., Robertson, I. P., Waite, J. H. Jr., Yelle, R. V., Vuitton, V., Coates, A. J., Wahlund, J. E., Agren, K., Richard, R. K., … Neubauer, F. M. (2009). Model-data comparisons for Titan’s nightside ionosphere. Icarus, 199(1), 174–188.

Cravens, T. E., Richard, M., Ma, Y. J., Bertucci, C., Luhmann, J. G., Ledvina, S., Robertson, I. P., Wahlund, J. E., Ågren, K., … Ulusen, D. (2010). Dynamical and magnetic field time constants for Titan’s ionosphere: empirical estimates and comparisons with Venus. J. Geophys. Res., 115(A8), A08319.

Cui, J., Yelle, R. V., and Volk, K. (2008). Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. J. Geophys. Res. Planets, 113(E10), E10004.

Cui, J., Galand, M., Yelle, R. V., Vuitton, V., Wahlund, J. E., Lavvas, P. P., Müller-Wodarg, I. C. F., Cravens, T. E., Kasprzak, W. T., and Waite, J. H. Jr. (2009). Diurnal variations of Titan's ionosphere. J. Geophys. Res. Space Phys., 114(A6), A06310.

Cui, J., Galand, M., Yelle, R. V., Wahlund, J. E., Ågren, K., Waite, J. H. Jr., and Dougherty, M. K. (2010). Ion transport in Titan’s upper atmosphere. J. Geophys. Res. Space Phys., 115(A6), A06314.

Cui, J., Yelle, R. V., Müller-Wodarg, I. C. F., Lavvas, P. P., and Galand, M. (2011). The implications of the H2 variability in Titan’s exosphere. J. Geophys. Res. Space Phys., 116(A11), A11324.

De La Haye, V., Waite, J. H. Jr., Cravens, T. E., Nagy, A. F., Johnson, R. E., Lebonnois, S., and Robertson, I. P. (2007). Titan’s corona: the contribution of exothermic chemistry. Icarus, 191(1), 236–250.

Edberg, N. J. T., Wahlund J. E., Ågren K., Morooka, M. W., Modolo, R., Bertucci, C., and Dougherty, M. K. (2010). Electron density and temperature measurements in the cold plasma environment of Titan: implications for atmospheric escape. Geophys. Res. Lett., 37(20), L20105.

Gurnett, D. A., Scarf, F. L., and Kurth, W. S. (1982). The structure of Titan’s wake from plasma wave observations. J. Geophys. Res. Space Phys., 87(A3), 1395–1403.

Gurnett, D. A., Kurth, W. S., Kirchner, D. L., Hospodarsky, G. B., Averkamp, T. F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., … Pedersen, A. (2004). The Cassini radio and plasma wave investigation. Space Sci. Rev., 114(1-4), 395–463.

Ledvina, S. A., and Brecht, S. H. (2012). Consequences of negative ions for Titan’s plasma interaction. Geophys. Res. Lett., 39(20), L20103.

Lundin, R. (2011). Ion acceleration and outflow from mars and Venus: an overview. Space Sci. Rev., 162(1-4), 309–334.

Ma, Y. J., Nagy, A. F., Cravens, T. E., Sokolov, I. V., Hansen, K. C., Wahlund, J. E., Crary, F. J., Coates, A. J., and Dougherty, M. K. (2006). Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J. Geophys. Res. Space Phys., 111(A5), A05207.

Mandt, K. E., Gell, D. A., Perry, M., Waite, J. K. Jr., Crary, F. A., Young, D., Magee, B. A., Westlake, J. H., Cravens, T., … Liang, M. C. (2012). Ion densities and composition of Titan’s upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: analysis methods and comparison of measured ion densities to photochemical model simulations. J. Geophys. Res. Planets, 117(E10), E10006.

Modolo, R., and Chanteur, G. M. (2008). A global hybrid model for Titan's interaction with the Kronian plasma: application to the Cassini Ta flyby. J. Geophys. Res. Space Phys., 113(A1), A01317.

Müller-Wodarg, I. C. F., Yelle, R. V., Cui, J., and Waite, J. H. (2008). Horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. Planets, 113(E10), E10005.

Romanelli, N., Modolo, R., Dubinin, E., Berthelier, J. J., Bertucci, C., Wahlund, J. E., Leblanc, F., Canu, P., Edberg, N. J. T., … Dougherty, M. (2014). Outflow and plasma acceleration in Titan’s induced magnetotail: evidence of magnetic tension forces. J. Geophys. Res. Space Phys., 119(12), 9992–10005.

Schunk, R. W., and Nagy, A. F. (2009). Ionospheres: Physics, Plasma Physics, and Chemistry (2nd ed). New York, USA: Cambridge University Press.222

Sillanpää, I., Kallio, E., Janhunen, P., Schmidt, W., Mursula, K., Vilppola, J., and Tanskanen, P. (2006). Hybrid simulation study of ion escape at Titan for different orbital positions. Adv. Space Res., 38(4), 799–805.

Sittler, E. C. Jr., Hartle, R. E., Johnson, R. E., Cooper, J. F., Lipatov, A. S., Bertucci, C., Coates, A. J., Szego, K., Shappirio, M., … Wahlund, J. E. (2010). Saturn’s magnetospheric interaction with Titan as defined by Cassini encounters T9 and T18: new results. Planet. Space Sci., 58(3), 327–350.

Strobel, D. F. (2010). Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus, 208(2), 878–886.

Tucker, O. J., Johnson, R. E., Deighan, J. I., and Volkov, A. N. (2013). Diffusion and thermal escape of H2 from Titan’s atmosphere: Monte Carlo simulations. Icarus, 222(1), 149–158.

Vuitton, V., Yelle, R. V., and McEwan, M. J. (2007). Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus, 191(2), 722–742.

Wahlund, J. E., Boström, R., Gustafsson, G., Gurnett, D. A., Kurth, W. S., Pedersen, A., Hospodarsky, G. B., Persoon, A. M., Canu, P., … Müller-Wodarg, I. (2005). Cassini measurements of cold plasma in the ionosphere of Titan. Science, 308(5724), 986–989.

Wahlund, J. E., Galand, M., Müller-Wodarg, I., Cui, J., Yelle, R. V., Crary, F. J., Mandt, K., Magee, B., Waite, J. H. Jr., … Kurth, W. S. (2009). On the amount of heavy molecular ions in Titan’s ionosphere. Planet. Space Sci., 57(14-15), 1857–1565.

Waite, J. H. Jr., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., Block, B. P., Cravens, T. E., Fletcher, G. G., Ip, W. H., Luhmann, J. G., … Yelle, R. V. (2004). The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci. Rev., 114(1-4), 113–231.

Westlake, J. H., Paranicas, C. P., Cravens, T. E., Luhmann, J. G., Mandt, K. E., Smith, H. T., Mitchell, D. G., Rymer, A. M., Perry, M. E., …Wahlund, J. E. (2012). The observed composition of ions outflowing from Titan. Geophys. Res. Lett., 39(19), L19104.


MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029


WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001


Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009


Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046


Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042


ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046


ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007


Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062


JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Species-dependent ion escape on Titan

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei