Citation:
Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li,
2019: The first two leading modes of the tropical Pacific and their linkage without global warming
, Earth and Planetary Physics, 3, 157-165.
doi: 10.26464/epp2019019
2019, 3(2): 157-165. doi: 10.26464/epp2019019
The first two leading modes of the tropical Pacific and their linkage without global warming
1. | College of Atmospheric Science, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China |
2. | State Chongqing Climate Center, Chongqing 401147, China |
3. | Beijing Meteorological Service, Beijing 100875, China |
A discrepancy remains in the first two leading empirical orthogonal function (EOF) modes of the tropical Pacific sea surface temperature anomaly (SSTA) based on observations since the 1980s. The EOF1 mode, representing the El Niño-Southern Oscillation (ENSO), is a robust result. However, the EOF2 features either El Niño Modoki (EM) or ENSO evolution during different periods, which is probably associated with the impacts of global warming. The underlying question is what the EOF2 mode of the tropical Pacific would be without global warming. Using the CMIP5 preindustrial scenario to exclude the influence of global warming, we find that the EOF1 mode of the tropical Pacific SSTA represents ENSO and that the EOF2 mode is not EM. According to the lead–lag correlation between the ENSO and EOF2 modes, the linkage between these two modes is as follows: …El Niño → EOF2 → La Niña → –EOF2 → El Niño…. By analyzing the evolution of sea surface temperature, surface wind, and subsurface ocean temperature anomalies, we find the mechanism linking the ENSO and EOF2 modes is the air–sea interaction associated with the ENSO cycle. This result suggests that the EOF2 mode represents an aspect of ENSO evolution under preindustrial conditions. Therefore, this study further indicates that the EM is probably due to the influence of global warming.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112(C11), C11007. https://doi.org/10.1029/2006JC003798 |
Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J. (2014). ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42(7-8), 1999–2018. https://doi.org/10.1007/s00382-013-1783-z |
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., … Kristjánsson, J. E. (2013). The Norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013 |
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev., 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 |
Bleck, R., and Smith, L. T. (1990). A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. J. Geophys. Res. Oceans, 95(C3), 3273–3285. https://doi.org/10.1029/JC095iC03p03273 |
Bleck, R., Rooth, C., Hu, D. M., and Smith, L. T. (1992). Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22(12), 1486–1505. https://doi.org/10.1175/1520-0485(1992)022<1486:SDTTIA>2.0.CO;2 |
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I. (1999). The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12(7), 1990–2009. https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2 |
Capotondi, A. (2013). ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118(10), 4755–4770. https://doi.org/10.1002/jgrc.20335 |
Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., … Yeh, S. W. (2015). Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96(6), 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1 |
Carton, J. A., and Giese, B. S. (2008). A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev., 136(8), 2999–3017. https://doi.org/10.1175/2007MWR1978.1 |
Collins, M., An, S. I., Cai, W. J., Ganachaud, A., Guilyardi, E., Jin, F. F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A. (2010). The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci., 3(6), 391–397. https://doi.org/10.1038/ngeo868 |
Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S. (2010). Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115–143. https://doi.org/10.1146/annurev-marine-120408-151453 |
Feng, J., and Li, J. P. (2011). Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res. Atmos., 116(D13), D13102. https://doi.org/10.1029/2010JD015160 |
Fernández, N. C., Herrera, R. G., Puyol, D. G., Martín, E. H., García, R. R., Presa, L. G., and Rodríguez, P. R. (2004). Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979-2000. J. Climate, 17(20), 3934–3946. https://doi.org/10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2 |
Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., Kristjánsson, J. E., Medhaug, I., … Seierstad, I. A. (2013). The Norwegian earth system model, NorESM1-M—Part 2: Climate response and scenario projections. Geosci. Model Dev., 6(2), 389–415. https://doi.org/10.5194/gmd-6-389-2013 |
Jha, B., Hu, Z. Z., and Kumar, A. (2014). SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Climate Dyn., 42(7-8), 2113–2124. https://doi.org/10.1007/s00382-013-1803-z |
Jin, F. F. (1997a). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54(7), 811–829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2 |
Jin, F. F. (1997b). An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54(7), 830–847. https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2 |
Jin, F. F., An, S. I., Timmermann, A., and Zhao, J. X. (2003). Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30(3), 1120. https://doi.org/10.1029/2002GL016356 |
Kang, I. S., An, S. I., and Jin, F. F. (2001). A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79(1), 1–10. https://doi.org/10.2151/jmsj.79.1 |
Kao, H. Y., and Yu, J. Y. (2009). Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22(3), 615–632. https://doi.org/10.1175/2008JCLI2309.1 |
Karnauskas, K. B. (2013). Can we distinguish canonical El Niño from Modoki?. Geophys Res. Lett., 40(19), 5246–5251. https://doi.org/10.1002/grl.51007 |
Kelly, P. M., and Jones, P. D. (1996). Removal of the El Niño-Southern Oscillation signal from the gridded surface air temperature data set. J. Geophys. Res. Atmos., 101(D14), 19013–19022. https://doi.org/10.1029/96JD01173 |
Kim, S. T., and Jin, F. F. (2011). An ENSO stability analysis. Part Ⅱ: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36(7-8), 1609–1627. https://doi.org/10.1007/s00382-010-0872-5 |
Kim, S. T., Cai, W. J., Jin, F. F., and Yu, J. Y. (2014a). ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42(11-12), 3313–3321. https://doi.org/10.1007/s00382-013-1833-6 |
Kim, S. T., Cai, W. J., Jin, F. F., Santoso, A., Wu, L. X., Guilyardi, E., and An, S. I. (2014b). Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4(9), 786–790. https://doi.org/10.1038/nclimate2326 |
Kug, J. S., Jin, F. F., and An, S. I. (2009). Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22(6), 1499–1515. https://doi.org/10.1175/2008JCLI2624.1 |
Larkin, N. K., and Harrison, D. E. (2005). On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32(13), L13705. https://doi.org/10.1029/2005GL022738 |
Lee, T., and McPhaden, M. J. (2010). Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37(14), L14603. https://doi.org/10.1029/2010gl044007 |
Lemmon, D. E., and Karnauskas, K. B. (2018). A metric for quantifying El Niño pattern diversity with implications for ENSO–mean state interaction. Climate Dyn., https://doi.org/10.1007/s00382-018-4194-3222 |
Li, J. P., Feng, J., and Li, Y. (2012). A possible cause of decreasing summer rainfall in northeast Australia. Int. J. Climatol., 32(7), 995–1005. https://doi.org/10.1002/joc.2328 |
Li, J. P., Sun, C., and Jin, F. F. (2013). NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40(20), 5497–5502. https://doi.org/10.1002/2013GL057877 |
Li, Y., Li, J. P., Zhang, W. J., Zhao, X., Xie, F., and Zheng, F. (2015). Ocean dynamical processes associated with the tropical Pacific cold tongue mode. J. Geophys. Res. Oceans, 120(9), 6419–6435. https://doi.org/10.1002/2015JC010814 |
Li, Y., Li, J. P., Zhang, W. J., Chen, Q. L., Feng, J., Zheng, F., Wang, W., and Zhou, X. (2017). Impacts of the tropical Pacific cold tongue mode on ENSO diversity under global warming. J. Geophys. Res. Oceans, 122(11), 8524–8542. https://doi.org/10.1002/2017JC013052 |
Marathe, S., Ashok, K., Swapna, P., and Sabin, T. P. (2015). Revisiting El Niño Modokis. Climate Dyn., 45(11-12), 3527–3545. https://doi.org/10.1007/s00382-015-2555-8 |
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev., 110(7), 699–706. https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 |
Pausata, F. S. R., Chafik, L., Caballero, R., and Battisti, D. S. (2015). Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl Acad. Sci. USA, 112(45), 13784–13788. https://doi.org/10.1073/pnas.1509153112 |
Rasmusson, E. M., and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev., 110(5), 354–384. https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2 |
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108(D14), 4407. https://doi.org/10.1029/2002JD002670 |
Ren, H. L., and Jin, F. F. (2011). Niño indices for two types of ENSO. Geophys. Res. Lett., 38(4), L04704. https://doi.org/10.1029/2010GL046031 |
Ren, H. L., and Jin, F. F. (2013). Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26(17), 6506–6523. https://doi.org/10.1175/JCLI-D-12-00601.1 |
Ren, H. L., Jin, F. F., Tian, B., and Scaife, A. A. (2016). Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43(20), 10973–10979. https://doi.org/10.1002/2016GL071015 |
Risbey, J. S., Lewandowsky, S., Langlais, C., Monselesan, D. P., O’Kane, T. J., and Oreskes, N. (2014). Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Climate Change, 4(9), 835–840. https://doi.org/10.1038/nclimate2310 |
Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B. (2011). ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38(10), L10704. https://doi.org/10.1029/2011GL047364 |
Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1 |
Trenberth, K. E., and Stepaniak, D. P. (2001). Indices of El Niño evolution. J. Climate, 14(8), 1697–1701. https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2 |
Trenberth, K. E., Stepaniak, D. P., and Caron, J. M. (2002a). Interannual variations in the atmospheric heat budget. J. Geophys. Res. Atmos., 107(D8), AAC 4-1–AAC 4-15. https://doi.org/10.1029/2000JD000297 |
Trenberth, K. E., Caron, J. M., Stepaniak, D. P., and Worley, S. (2002b). Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. Atmos., 107(D8), AAC 5-1–AAC 5-17. https://doi.org/10.1029/2000JD000298 |
Trenberth, K. E., and Fasullo, J. T. (2013). An apparent hiatus in global warming?. Earth’s Future, 1(1), 19–32. https://doi.org/10.1002/2013EF000165 |
Wallace, J. M., and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev., 109(4), 784–812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 |
Weng, H. Y., Ashok, K., Behera, S. K., Rao, S. A., and Yamagata, T. (2007). Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29(2-3), 113–129. https://doi.org/10.1007/s00382-007-0234-0 |
Weng, H. Y., Behera, S. K., and Yamagata, T. (2009). Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32(5), 663–674. https://doi.org/10.1007/s00382-008-0394-6 |
Xie, F., Li, J., Tian, W., Feng, J., and Huo, Y. (2012). Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12(11), 5259–5273. https://doi.org/10.5194/acp-12-5259-2012 |
Xie, F., Li, J. P., Tian, W. S., Fu, Q., Jin, F. F., Hu, Y. Y., Zhang, J. K., Wang, W. K., Sun, C., … Ding, R. Q. (2016). A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11(12), 124026. https://doi.org/10.1088/1748-9326/11/12/124026 |
Xie, F., Li, J. P., Zhang, J. K., Tian, W. S., Hu, Y. Y., Zhao, S., Sun, C., Ding, R. Q., Feng, J., and Yang, Y. (2017). Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett., 12(11), 114023. https://doi.org/10.1088/1748-9326/aa9005 |
Yang, R. W., Xie, Z., and Cao, J. (2017). A dynamic index for the westward ridge point variability of the Western Pacific subtropical high during summer. J. Climate, 30(9), 3325–3341. https://doi.org/10.1175/JCLI-D-16-0434.1 |
Yang, R. W., Wang, J., Zhang, T. Y., and He, S. P. (2019). Change in the relationship between the Australian summer monsoon circulation and boreal summer precipitation over Central China in the late 1990s. Meteor. Atmos. Phys., 131(1), 105–113. https://doi.org/10.1007/s00703-017-0556-3 |
Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., and Jin, F. F. (2009). El Niño in a changing climate. Nature, 461(7263), 511–514. https://doi.org/10.1038/nature08316 |
Yulaeva, E., and Wallace, J. M. (1994). The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7(11), 1719–1736. https://doi.org/10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2 |
Zhang, W. J., Li, J. P., and Zhao, X. (2010). Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res. Oceans, 115(C12), C12042. https://doi.org/10.1029/2010JC006501 |
Zhang, W. J., Jin, F. F., Li, J. P., and Ren, H. L. (2011). Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn. J. Meteor. Soc. Japan, 89(5), 563–569. https://doi.org/10.2151/jmsj.2011-510 |
Zhang, W. J., Jin, F. F., Zhao, J. X., Qi, L., and Ren, H. L. (2013). The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J. Climate, 26(21), 8392–8405. https://doi.org/10.1175/JCLI-D-12-00851.1 |
Zhang, W. J., Jin, F. F., and Turner, A. (2014). Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41(11), 4020–4026. https://doi.org/10.1002/2014GL060130 |
Zheng, F., Zhu, J., Zhang, R. H., and Zhou, G. Q. (2006). Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33(19), L19604. https://doi.org/10.1029/2006GL026994 |
Zheng, F., Li, J. P., Clark, R. T., and Nnamchi, H. C. (2013). Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Climate, 26(24), 9860–9879. https://doi.org/10.1175/JCLI-D-13-00204.1 |
Zheng, F., Fang, X. H., Yu, J. Y., and Zhu, J. (2014). Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41(21), 7651–7657. https://doi.org/10.1002/2014GL062125 |
Zheng, F., and Zhu, J. (2016). Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47(12), 3901–3915. https://doi.org/10.1007/s00382-016-3048-0 |
Zheng, F., Fang, X. H., Zhu, J., Yu, J. Y., and Li, X. C. (2016). Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43(24), 12560–12568. https://doi.org/10.1002/2016GL071636 |
Zheng, F., and Yu, J. Y. (2017). Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395–1403. https://doi.org/10.1007/s00376-017-6324-y |
[1] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[2] |
Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012 |
[3] |
Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics, 4, 493-503. doi: 10.26464/epp2020044 |
[4] |
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009 |
[5] |
ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046 |
[6] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[7] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[8] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[9] |
WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033 |
[10] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[11] |
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028 |
[12] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[13] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[14] |
Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031 |
[15] |
JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034 |
[16] |
JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038 |
[17] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[18] |
Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics, 4, 588-597. doi: 10.26464/epp2020068 |
[19] |
HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006 |
[20] |
Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)