Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

2019, 3(2): 87-92. doi: 10.26464/epp2019017


A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau


Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China


Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China


University of Chinese Academy of Sciences, Beijing 100049, China


Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China


Key Laboratory of Atmospheric Optics, Anhui institute of optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031, China


Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China

Corresponding author: JinQiang Zhang, Cai,

Received Date: 2018-11-03
Web Publishing Date: 2019-03-01

The unique geographical location and high altitude of the Tibetan Plateau can greatly influence regional weather and climate. In particular, the Asian summer monsoon (ASM) anticyclone circulation system over the Tibetan Plateau is recognized to be a significant transport pathway for water vapor and pollutants to enter the stratosphere. To improve understanding of these physical processes, a multi-location joint atmospheric experiment was performed over the Tibetan Plateau from late July to August in 2018, funded by the five-year (2018–2022) STEAM (stratosphere and troposphere exchange experiment during ASM) project, during which multiple platforms/instruments—including long-duration stratospheric balloons, dropsondes, unmanned aerial vehicles, special sounding systems, and ground-based and satellite-borne instruments—will be deployed. These complementary methods of data acquisition are expected to provide comprehensive atmospheric parameters (aerosol, ozone, water vapor, CO2, CH4, CO, temperature, pressure, turbulence, radiation, lightning and wind); the richness of this approach is expected to advance our comprehension of key mechanisms associated with thermal, dynamical, radiative, and chemical transports over the Tibetan Plateau during ASM activity.

Key words: Tibetan Plateau, Asian summer monsoon, stratosphere and troposphere exchange

Bergman, J. W., Fierli, F., Jensen, E. J., Honomichl, S., and Pan, L. L. (2013). Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit. J. Geophys. Res., 118(6), 2560–2575.

Bian, J. C., Yan, R. C., and Chen, H. B. (2011). Tropospheric pollutant transport to the stratosphere by Asian summer monsoon. Chin. J. Atmos. Sci. (in Chinese) , 35(5), 897–902.

Bian, J. C., Pan, L. L., Paulik, L., Vömel, H., Chen, H. B., and Lu, D. R. (2012). In situ water vapor and ozone measurements in Lhasa and Kunming during the Asian summer monsoon. Geophys. Res. Lett., 39(19), L19808.

Chen, B., Xu, X. D., Yang. S., and Zhao, T. L. (2012). Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach. Atmos. Chem. Phys., 12(13), 5827–5839.

Fu, R., Hu, Y. L, Wright, S., Jiang, H. H., Dickinson, R. E., Chen, M. X., Filipiak, M., Read, W. G., Waters, J. W., and Wu, D. L. (2006). Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103(15), 5664–5669.

Gao, R. S., Telg, H., McLaughlin, R. J., Ciciora, S. J., Watts, L. A., Richardson, M. S., Schwarz, J. P., Perring, A. E., Thornberry, T. D., … Fahey, D. W. (2016). A light-weight, high-sensitivity particle spectrometer for PM2.5 aerosol measurements. Aerosol Sci. Technol., 50(1), 88–99.

Gettelman, A., Kinnison, D. E., Dunkerton, T. J., and Brasseur, G. P. (2004). Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109(D22), D22101.

Karion, A., Sweeney, C., Tans, P., and Newberger. T. (2010). AirCore: an innovative atmospheric sampling system. J. Atmos. Ocean. Technol., 27(11), 1839–1853.

Komhyr, W. D. (1969). Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203–210

Li, D., Vogel, B., Müller, R., Bian, J. C., Günther, G., Li, Q., Zhang, J. Q., Bai, Z. X., Vömel, H., and Riese, M. (2018). High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: influence of convective transport and stratospheric intrusions. Atmos. Chem. Phys., 18(24), 17979–17994.

Li, Q. B., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J., Waters, J. W., Zhang, Y. S., Wang, B., Filipiak, M. J., … Jacob, D. J. (2005). Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32(14), L14826.

Lu, D. R., Pan, W. L., and Wang, Y. N. (2018). Atmospheric profiling synthetic observation system in Tibet. Adv. Atmos. Sci., 35(3), 264–267.

Park, M., Randel, W. J., Gettelman, A., Massie, S. T., and Jiang, J. H. (2007). Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112(D16), D16309.

Qing, C., Wu, X. Q., Huang, H. H., Tian, Q. G., Zhu, W. T., Rao, R. Z., and Li, X. B. (2016a). Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model. Opt. Express, 24(18), 20424–20436.

Qing, C., Wu, X. Q., Li, X. B., Zhu, W. Y., Qiao, C. H., Rao, R. Z., and Mei, H. P. (2016b). Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean. Opt. Express, 24(12), 13303–13315.

Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone, C., and Pumphrey, H. (2010). Asian monsoon transport of pollution to the stratosphere. Science, 328(5978), 611–613.

Rosen, J. M., and Kjome, N. T. (1991). Backscattersonde: a new instrument for atmospheric aerosol research. Appl. Opt., 30(12), 1552–1561.

Solomon, S., Daniel, J. S., Neely III, R. R., Vernier J. P., Dutton, E. G., and Thomason, L. W. (2011). The persistently variable " background” stratospheric aerosol layer and global climate change. Science, 333(6044), 866–870.

Vernier, J. P., Fairlie, T. D., Natarajan, M., Wienhold, F. G., Bian, J., Martinsson, B. G., Crumeyrolle, S., Thomason, L. W., and Bedka, K. M. (2015). Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res., 120(4), 1608–1619.

Vömel, H., David, D. E., and Smith. K. (2007). Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112(D8), D08305.

Wu, G. X., Liu, Y. M., Zhang, Q., Duan, A. M., Wang, T. M., Wan, R. J., Liu, X., Li, W. P., Wang, Z. Z., and Liang, X. Y. (2007). The influence of mechanical and thermal forcing by the Tibetan plateau on Asian climate. J. Hydrometeorol., 8(4), 770–789.

Wu, X. Q., Tian, Q. G., Jiang, P., Chai, B., Qing, C., Cai, J., Jin, X. M., and Zhou, H. Y. (2015). A new method of measuring optical turbulence of atmospheric surface layer at Antarctic Taishan Station with ultrasonic anemometer. Adv. Polar Sci., 26(4), 305–310.

Yao, T., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X. X., Duan, K. Q., Zhao, H. B., … Joswiak, D. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2(9), 663–667.

Yu, P., Rosenlof, K. H., Liu, S., Telg, H., Thornberry, T. D., Rollins, A. W., Portmann, R. W., Bai, Z., Ray, E. A., … Gao, R. S. (2017). Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proc. Natl. Acad. Sci. USA, 114(27), 6972–6977.

Zhou, X. J., Luo, C., Li, W. L., and Shi, J. E. (1995). Variation of total ozone over China and the Tibetan Plateau low center. Chin. Sci. Bull. (in Chinese) , 40(15), 1396–1398

Zhou, X. J., Zhao, P., Chen, J. M., Chen, L. X., and Li, W. L. (2009). Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China Ser. D Earth Sci., 52(11), 1679–1693.

Zhu, W. Y., Xu, C. D., Qian, X. M., and Wei, H. L. (2013). Statistical analysis of the spatial-temporal distribution of aerosol extinction retrieved by micro-pulse lidar in Kashgar, China. Opt. Express, 21(3), 2531–2537.


RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045


TianJun Zhou, 2019: Toward better watching of the deep atmosphere over East Asia, Earth and Planetary Physics, 3, 85-86. doi: 10.26464/epp2019010


Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system, Earth and Planetary Physics, 3, 147-156. doi: 10.26464/epp2019018


YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics. doi: 10.26464/epp2020061


Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011


Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu