Citation:
HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu,
2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61.
http://doi.org/10.26464/epp2019006
2019, 3(1): 53-61. doi: 10.26464/epp2019006
Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data
1. | Key Laboratory of Earthquake Prediction, China Earthquake Administration, Beijing 100036, China |
2. | Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China |
We analyzed 360 permanent and campaign GPS data from 1999 to 2017 in the southern Sichuan-Yunan block, and obtained crustal horizontal deformation in this region. Then, we derived the strain rate using a multi-scale spherical wavelet method. Results reveal a complex pattern of tectonic movement in the southern Sichuan-Yunnan block. Compared to the stable Eurasian plate, the maximum rate of the horizontal deformation in the southern Sichuan-Yunnan block is approximately 22 mm/a. The Xiaojiang fault shows a significantly lower deformation—a left-lateral strike-slip movement of 9.5 mm/a. The Honghe fault clearly shows a complex segmental deformation from the north to south. The northern Honghe fault shows 4.3 mm/a right strike-slip with 6.7 mm/a extension; the southern Honghe fault shows 1.9 mm/a right strike-slip with 1.9 mm/a extension; the junction zone in the Honghe and Lijiang–Xiaojinhe faults shows an obvious clockwise-rotation deformation. The strain calculation results reveal that the maximum shear-strain rate in this region reaches 70 nstrain/a, concentrated around the Xiaojiang fault and at the junction of the Honghe and Lijiang–Xiaojinhe faults. We note that most of the earthquakes with magnitudes of 4 and above that occurred in this region were within the high shear strain-rate zones and the strain rate gradient boundary zone, which indicates that the magnitude of strain accumulation is closely related to the seismic activities. Comparison of the fast shear-wave polarization direction of the upper-crust with the upper-mantle anisotropy and the direction of the surface principal compressive strain rate obtained from the inversion of the GPS data reveals that the direction of the surface principal compressive strain is basically consistent with the fast shear-wave polarization direction of the upper crust anisotropy, but different from the polarization direction of the upper mantle. Our results support the hypothesis that the principal elements of the deformation mechanism in the southern Sichuan-Yunnan block are decoupling between the upper and lower crust and ductile flow in the lower crust.
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res., 121(8), 6109–6131. https://doi.org/10.1002/2016JB013098 |
Bao, B. C., Hu, W., Liu, Z. S., Kang, Z. S., Xu, J. P. (2009). Dynamical analysis of DOG wavelet mapping with dilation and translation. Acta Physica Sinica(in Chinese) |
Bogdanova, I., Vandergheynst, P., Antoine, J. P., Jacques, L., and Morvidone, M. (2005). Stereographic wavelet frames on the sphere. Appl. Comput. Harmonic Anal., 19(2), 223–252. https://doi.org/10.1016/j.acha.2005.05.001 |
Chang, L. J., Wang, C. Y., and Ding, Z. F. (2006). A study on SKS splitting beneath the Yunnan region. Chinese J. Geophys.(in Chinese) |
Chang, L. J., Ding, Z. F., and Wang, C. Y. (2015). Upper mantle anisotropy beneath the southern segment of North-south tectonic belt, China. Chinese J. Geophys.(in Chinese) |
Chen, Y., Zhang, Z. J., Sun, C. Q., and Badal, J. (2013). Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Res., 24(3–4), 946–957. https://doi.org/10.1016/j.gr.2012.04.003 |
Deng, Q. D., Zhang, P. Z., Ran, Y. K., Yang, X. P., and Min, W., and Chu, Q. Z. (2003). Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci., 46(4), 356–372. https://doi.org/10.1360/03yd9032 |
Gan, W. J., Zhang, P. Z., Shen, Z. K., Niu, Z. J., Wang, M., Wan, Y. G., Zhou, D. M., and Cheng, J. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 112(B8), B08416. https://doi.org/10.1029/2005JB004120 |
Gao, Y., Wu, J., Yi, G. X., and Shi, Y. T. (2010). Crustal-mantle coupling in north China: Preliminary analysis from seismic anisotropy. Chinese Sci. Bull., 55(31), 3599–3605. https://doi.org/10.1007/s11434-010-4135-y |
Gao, Y., Wu, J., Fukao, Y., Shi, Y. T., and Zhu, A. L. (2011). Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophys. J. Int., 187(2), 642–654. https://doi.org/10.1111/j.1365-246X.2011.05200.x |
Huang, J. L., Zhao, D. P., and Zheng, S. H. (2002). Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res., 107(B10), ESE 13-1–ESE 13-14. https://doi.org/10.1029/2000JB000137 |
Huang, Z. C., Wang, P., Xu, M. J., Wang, L. S., Ding, Z. F., Wu, Y., Xu, M. J., Mi, N., Yu, D. Y., and Li, H. (2015a). Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth Planet. Sci. Lett., 411, 100–111. https://doi.org/10.1016/j.jpgl.2014.11.040 |
Huang, Z. C., Wang, L. S., Xu, M. J., Ding, Z. F., Wu, Y., Wang, P., Mi, N., Yu, D. Y., and Li, H. (2015b). Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth Planet. Sci. Lett., 432, 354–362. https://doi.org/10.1016/j.jpgl.2015.10.027 |
Jiang, Z. S., and Liu, J. N. (2010). The method in establishing strain field and velocity field of crustal movement using least squares collocation. Chinese J. Geophys.(in Chinese) |
Lev, E., Long, M. D., and van der Hilst, R. D. (2006). Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett., 251(3–4), 293–304. https://doi.org/10.1016/j.jpgl.2006.09.018 |
Lu, L. Y., He, Z. Q., Ding, Z. F., and Wang, C. Y. (2014). Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise. Chinese J. Geophys.(in Chinese) |
Pan, Y. J., and Shen, W. B. (2017). Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements. Sci. Rep., 7, 45348. https://doi.org/10.1038/srep45348 |
Savage, J. C., Svarc, J. L., and Prescott, W. H. (1999). Geodetic estimates of fault slip rates in the San Francisco Bay area. J. Geophys. Res., 104(B3), 4995–5002. https://doi.org/10.1029/1998JB900108 |
Shen, Z. K., Lu, J. N., Wang, M., and Bürgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan plateau. J. Geophys. Res., 110(B11), B11409. https://doi.org/10.1029/2004JB003421 |
Shi, Y. T., Gao, Y., Wu, J., and Su, Y. J. (2009). Crustal seismic anisotropy in Yunnan, Southwestern China. J. Seismol., 13(2), 287–299. https://doi.org/10.1007/s10950-008-9128-9 |
Shi, Y. T., Gao, Y., Su, Y. J., and Wang, Q. (2012). Shear-wave splitting beneath Yunnan area of Southwest China. Earthq. Sci., 25(1), 25–34. https://doi.org/10.1007/s11589-012-0828-4 |
Sol, S., Meltzer, S. A., Bürgmann, R., van der Hilst, R. D., King, R., Chen, Z., Koons, P. O., Lev, E., Liu, Y. P., … Zurek, B. (2007). Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566. https://doi.org/10.1130/G23408A.1 |
Su, X. N., Meng, G. J., and Wang, Z. (2016). Methodology and application of GPS strain field estimation based on multi-scale spherical wavelet. Chinese J. Geophys.(in Chinese) |
Tai, L. X., Gao, Y., Liu, G., and Xiao, Z. (2015). Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data: shear-wave splitting from temporary observations of the first phase. Chinese J. Geophys.(in Chinese) |
Wang, C. Y., Chan, W. W., Mooney, W. D. (2003). Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res., 108, B9, 2442. https://doi.org/10.1029/2002JB001973 |
Wang, C. Y., Flesch, L. M., Silver, P. G., Chang, L. J., and Chan, W. W. (2008). Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5), 363–366. https://doi.org/10.1130/G24450A.1 |
Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A., You, X. Z., Niu, Z. J., Wu, J. C., … Chen, Q. Z. (2001). Present-day crustal deformation in china constrained by global positioning system measurements. Science, 294(5542), 574–578. https://doi.org/10.1126/science.1063647 |
Wang, S., Xu, X. Y., and Hu, J. F. (2015). Review on the study of crustal structure and geodynamic models for the southeast margin of the Tibetan Plateau. Chinese J. Geophys.(in Chinese) |
Xu, X. W., Wen, X. Z., Zheng, R. Z., Ma, W. T., Song, F. M., and Yu, G. H. (2003). Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci., 46(S2), 210–226. https://doi.org/10.1360/03dz0017 |
Yao, H. J., Beghein, C., and Van der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure. Geophys. J. Int., 173(1), 205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x |
Yao, H. J., Van der Hilst, B. C., and Montagner, J. P. (2010). Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. J. Geophys. Res., 115(B12), B12307. https://doi.org/10.1029/2009JB007142 |
Zhang, E. H., Lou, H., Jia, S. X., and Li, Y. H. (2013). The deep crust structure characteristics beneath western Yunnan. Chinese J. Geophys.(in Chinese) |
Zhang, P. Z., Deng, Q. D., Zhang, G. M., Ma, J., Gan, W. J., Min, W., Mao, F. Y., and Wang, Q. (2003). Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Ser. D Earth Sci., 46(S2), 13–24. https://doi.org/10.1360/03dz0002 |
Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z. … You, X. Z. (2004). Continuous deformation of the Tibetan from Global Positioning System data. Geology, 32(9), 809–812. https://doi.org/10.1130/G20554.1 |
[1] |
Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003 |
[2] |
ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics, 6, 191-203. doi: 10.26464/epp2022016 |
[3] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[4] |
KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005 |
[5] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[6] |
HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, HeTing Jian, 2022: Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data, Earth and Planetary Physics, 6, 366-377. doi: 10.26464/epp2022034 |
[7] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[8] |
Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047 |
[9] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[10] |
HaiLong Li, ShuCan Ge, Lin Meng, MaoYan Wang, Abdur Rauf, Safi Ullah, 2021: Exploring the occurrence rate of PMSE-Es by Digisonde at Tromsø, Earth and Planetary Physics, 5, 187-195. doi: 10.26464/epp2021017 |
[11] |
Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026 |
[12] |
WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033 |
[13] |
Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033 |
[14] |
Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029 |
[15] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
[16] |
TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004 |
[17] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[18] |
JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042 |
[19] |
Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046 |
[20] |
Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)