Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

2018, 2(6): 455-461. doi: 10.26464/epp2018043

SPACE PHYSICS

Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite

1. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. 

Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

Corresponding author: Bin Zhou, zhoubin@nssc.ac.cnLei Li, lil@nssc.ac.cn

Received Date: 2018-08-23
Web Publishing Date: 2018-11-01

The High Precision Magnetometer (HPM) on board the China Seismo-Electromagnetic Satellite (CSES) allows highly accurate measurement of the geomagnetic field; it includes FGM (Fluxgate Magnetometer) and CDSM (Coupled Dark State Magnetometer) probes. This article introduces the main processing method, algorithm, and processing procedure of the HPM data. First, the FGM and CDSM probes are calibrated according to ground sensor data. Then the FGM linear parameters can be corrected in orbit, by applying the absolute vector magnetic field correction algorithm from CDSM data. At the same time, the magnetic interference of the satellite is eliminated according to ground-satellite magnetic test results. Finally, according to the characteristics of the magnetic field direction in the low latitude region, the transformation matrix between FGM probe and star sensor is calibrated in orbit to determine the correct direction of the magnetic field. Comparing the magnetic field data of CSES and SWARM satellites in five continuous geomagnetic quiet days, the difference in measurements of the vector magnetic field is about 10 nT, which is within the uncertainty interval of geomagnetic disturbance.

Key words: China Seismo-Electromagnetic Satellite (CSES), High Precision Magnetometer (HPM), fluxgate magnetometer, CPT magnetometer, data processing

Chen, S. W. (2009). Control and measure of satellite magnetic cleanliness. Prog. Geophys(in Chinese) , 24(2), 797–800. https://doi.org/10.3969/j.issn.1004-2903.2009.02.061

Cheng, B. J., Zhou, B., Magnes W, Lammegger, R., and Pollinger, A. (2018). High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci., 61(5), 659–668. https://doi.org/10.1007/s11431-018-9247-6

Friis-Christensen, E., Lühr, H., Hulot G. (2006). Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space, 58(4), 351–358. https://doi.org/10.1186/BF03351933

Lammegger, R. (2008). Method and device for measuring magnetic fields, WIPO, Patent WO/2008/151344.222

Liu, J. C. and Zhu, Z. (2012). Explanation and Implementation of the IAU 2000/2006 Resolutions on Fundamental Astronomy. Progr. Astron.(in Chinese) , 30(4), 411–437

Mandea, M. (2006). Magnetic Satellite Missions: Where have we been and where are we going?. C. R. Geosci., 338(14-15), 1002–1011. https://doi.org/10.1016/j.crte.2006.05.011

Merayo, J. M. G., Brauer, P., Primdahl, F., Petersen, J. R., and Nielsen, O. V. (2000). Scalar calibration of vector magnetometers. Measur. Sci. Technol., 11(2), 120–132. https://doi.org/10.1088/0957-0233/11/2/304

Olsen, N., Lühr, H., Mandea, M., Rother, M., Tøffner-Clausen, L., and Choi, S. (2006). CHAOS-a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. Int., 166(1), 67–75. https://doi.org/10.1111/j.1365-246X.2006.02959.x

Olsen, N., Tøffner-Clausen, L., Sabaka, T. J., Brauer, P., Merayo, J. M. G., Jörgensen, J. L., Léger, J. M., Nielsen, O. V., Primdahl, F., and Risbo, T. (2003). Calibration of the Ørsted vector magnetometer. Earth Planets Space, 55(1), 11–18. https://doi.org/10.1186/BF03352458

Pollinger, A., Lammegger, R., Magnes W, Hagen, C., Ellmeier, M., Jernej, I., Leichtfried, M., Kürbisch, C., Maierhofer, R., Baumjohann, W. (2018). Coupled Dark State Magnetometer for the China Seismo-Electromagnetic Satellite. Measur. Sci. Technol., 29(9). https://doi.org/10.108/1361-6501/aacde4

Potemra, T. A., Mobley, F. F., and Eckard, L. D. (1980). The geomagnetic field and its measurement: introduction and magnetic field satellite (Magsat) glossary. APL Tech. Dig., 1, 162–170

Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., and Dai, J. P. (2018). The State-of-the-Art of the China Seismo-Electromagnetic Satellite Mission. Sci. China Technol. Sci., 61(5), 634–642. https://doi.org/10.1007/s11431-018-9242-0

Xiao, Q., Geng, X. L., Chen, J. G., Meng, L. F., Li, N., and Zhang, Y. J. (2018). Calibration methods of the interference magnetic field for Low Earth Orbit (LEO) magnetic satellite. Chinese J. Geophys.(in Chinese) , 61(8), 3134–3138. https://doi.org/10.6038/cjg2018L0408

Yin, F. (2010). Mathematic Approaches for the Calibration of the CHAMP Satellite Magnetic Field Measurements. Potsdam: Universität Potsdam.222

Yin, F., Lühr, H., Rauberg, J., Michaelis, I., and Cai, H. T. (2013). Characterization of CHAMP magnetic data anomalies: magnetic contamination and measurement timing. Measur. Sci. Technol., 24(7), 445–455. https://doi.org/10.1088/0957-0233/24/7/075005

Zhang, Z. Q., Li, L., Zhou, B., and Zhang, Y. T. (2014). A method of in-orbit calibration of fluxgate magnetometer based on the measurement of absolute scalar magnetometer. Satellite. Chin. Space Sci. Technol.(in Chinese) , 34(2), 235–241. https://doi.org/10.11728/cjss2014.02.235

Zhou, B., Cheng, B. J., and Zhang, Y. T. (2018). The Earth magnetic field exploration mission of China seismo-electromagnetic satellite. J. Remote Sens.(in Chinese) (S1), 1993–2002. https://doi.org/10.11834/jrs.20187242

Zhou, B. and Wang, J. D. (2013). Influence of Magnetic Component Distribution of Satellite on Eliminating Remanant Magnetic Field by Gradient Method. Chin. Space Science and Technology(in Chinese) , 33(5), 29–34. https://doi.org/10.3780/j.issn.1000-758X.2013.05.005

[1]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[2]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[3]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[4]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[5]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[6]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[7]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[8]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

[9]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[10]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[11]

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

[12]

GuangXing Ding, JiaWei Li, XiaoXin Zhang, Fei He, LingPing He, KeFei Song, Liang Sun, Shuang Dai, ShiJie Liu, Bo Chen, Chao Yu, XiuQing Hu, SongYan Gu, ZhongDong Yang, Peng Zhang, 0: Wide-field aurora imager onboard Fengyun satellite: Data products and validation, Earth and Planetary Physics. doi: 10.26464/epp2021003

[13]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[14]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[15]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[16]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[17]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[18]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

[19]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[20]

XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li