Citation:
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan,
2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302.
doi: 10.26464/epp2018027
2018, 2(4): 292-302. doi: 10.26464/epp2018027
Optimization of the Mars ionospheric radio occultation retrieval
1. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
2. | Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China |
3. | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
Electron density is a key parameter to characterize Martian ionospheric structure and dynamics. Based on the ephemeris and auxiliary information derived from the Spacecraft, Planet, Instruments, C-matrix, and Events (SPICE) toolkit, we calculated the bending angle of signal path from the frequency residuals measured by the Mars Express Radio Science Experiment (MaRS) of the Mars Express (MEX) mission under the assumption of a spherically symmetric ionosphere. We stratified the ionosphere into layers and assumed a linear change of bending angle between layers, to derive profiles in radial distance of refractivity with the optimized parameters of upper integral limit of 4890 km and baseline correction boundary of 3690 km. Meanwhile, we also compared the retrieved electron density profiles between the frequency residuals of the single-frequency and differential Doppler of the dual-frequency. In total, ~640 electron density profiles of Martian ionosphere between April 2004 and April 2015 were retrieved successfully. There are 24 profiles identified manually that exhibit an additional sporadic layer occurrence below the normal two-layers. We also found that the peak altitude of this layer increases with the main peak altitude.
Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004). MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res., 109(E3), E03010. https://doi.org/10.1029/2003JE002154 |
Bullen, K. E. (1966). Implications of the revised mars radius. Nature, 211(5047), 396. https://doi.org/10.1038/211396a0 |
Cahoy, K. L., Hinson, D. P., and Tyler, G. L. (2006). Radio science measurements of atmospheric refractivity with Mars Global Surveyor. J. Geophys. Res., 111(E5), E05003. https://doi.org/10.1029/2005JE002634 |
Chicarro, A., Martin, P., and Trautner, R. (2004). The Mars Express mission: an overview. Mars Express the Scientific Payload, 1240: 3–13. http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=35549222 |
Fjeldbo, G., and Eshleman, V. R. (1965). The bistatic radar-occultation method for the study of planetary atmospheres. J. Geophys. Res., 70(13), 3217–3225. https://doi.org/10.1029/JZ070i013p03217 |
Fjeldbo, G., and Eshleman, V. R. (1969). Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci., 4(10), 879–897. https://doi.org/10.1029/RS004i010p00879 |
Fjeldbo, G., Kliore, A. J., and Seidel, B. (1970). The mariner 1969 occultation measurements of the upper atmosphere of Mars. Radio Sci., 5(2), 381–386. https://doi.org/10.1029/RS005i002p00381 |
Fjeldbo, G., Kliore, A. J., and Eshleman, V. R. (1971). The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron. J., 76, 123–140. https://doi.org/10.1086/111096 |
Fox, J. L. (2004). Advances in the aeronomy of Venus and Mars. Adv. Space Res., 33(2), 132–139. https://doi.org/10.1016/j.asr.2003.08.014 |
Grandin, M., Blelly, P., Witasse, O., and Marchaudon, A. (2015). Mars Express radio-occultation data: A novel analysis approach. J. Geophys. Res.:Space Phys., 119(12), 10621–10632. https://doi.org/10.1002/2014JA020698 |
Haider, S. A., and Mahajan, K. K. (2014). Lower and upper ionosphere of Mars. Space Sci. Rev., 182(1–4), 19–84. https://doi.org/10.1007/s11214-014-0058-2 |
Hantsch, M. H., and Bauer, S. J. (1990). Solar control of the Mars ionosphere. Planet Space Sci., 38(4), 539–542. https://doi.org/10.1016/0032-0633(90)90146-H |
Healy, S. B. (2001). Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study. J. Geophys. Res., 106(D11), 11875–11889. https://doi.org/10.1029/2001JD900050 |
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res.: Planets, 104(E11), 26997–27012. https://doi.org/10.1029/1999JE001069 |
Jiang, X. Q., Yang, B., Li, S. (2018). Overview of China’s 2020 Mars mission design and navigation. Astrodynamics, 2018, 2(1): 1-11. https://doi.org/10.1007/s42064-017-0011-8 |
Kliore, A., Dan, L. C., Levy, G. S., Eshleman, V. R., Fjeldbo, G., and Drake, F. D. (1965). Occultation experiment: results of the first direct measurement of Mars's atmosphere and ionosphere. Science, 149(3689), 1243–1248. https://doi.org/10.1126/science.149.3689.1243 |
Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., and Rasoo, S. I. (1972). Mariner 9 S-Band Martian occultation experiment: initial results on the atmosphere and topography of Mars. Science, 175(4019), 313–317. https://doi.org/10.1126/science.175.4019.313 |
Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., and Michael Jr, W. H.(1979). Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking. J. Geophys. Res.:Solid Earth, 84(B14), 8443–8456. https://doi.org/10.1029/JB084iB14p08443 |
Marissa, F. V., Withers, P., Fallows, K., Flynn, C. L., Andrews, D. J., Duru, F., and Morgan, D. D. (2016). Electron densities in the ionosphere of Mars: A comparison of MARSIS and radio occultation measurements. J. Geophys. Res.:Space Phys., 121(10), 10241–10257. https://doi.org/10.1002/2016JA022987 |
Michael Jr, W. H., Cain, D. L., Fjeldbo, G., Davies, J. G., Grossi, M. D., Shapiro, I. I., and Tyler, G. L. (1972). Radio science experiments: The Viking Mars orbiter and Lander. Icarus, 16(1), 57–73. https://doi.org/10.1016/0019-1035(72)90137-6 |
Molina-Cuberos, G. J., Witasse, O., Lebreton, J. P., Rodrigo, R.,and López-Moreno, J. J. (2003). Meteoric ions in the atmosphere of Mars. Planet. Space Sci., 51(3), 239–249. https://doi.org/10.1016/S0032-0633(02)00197-6 |
Pätzold, M., Neubauer, F. M., Carone, L., Hagermann, A., Stanzel1, C., Häusler, B., Remus, S., Selle, J., Hagl, D., … Dehant, V. (2004). MaRS: Mars express orbiter radio science. Mars Express the Scientific Payload, 1240: 141–163. http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=34889222 |
Pätzold, M., Tellmann, S., Häusler, B., Hinson, D.,Schaa, R., and Tyler, G. L. (2005). A Sporadic Third Layer in the Ionosphere of Mars. Science, 310(5749), 837–839. https://doi.org/10.1126/science.1117755 |
Pätzold, M., Tellmann, S., Andert, T., Carone, L., Fels, M., Schaa, R., Stanzel, C., Audenrieth-Kersten, I., Gahr, A., … Twicken, J. (2009). MaRS: Mars express radio science experiment. ESA SP-1291: 217–245. http://www.esa.int/esapub/sp/sp1240/sp1240web.pdf222 |
Pätzold, M., Häusler, B., Tyler, G. L., Andert, T., Asmar, S. W., Bird, M. K., Dehant, V., Hinson, D. P., Rosenblatt, P., … Remus, S. (2016). Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS). Planet. Space Sci., 127: 44–90. https://doi.org/10.1016/j.pss.2016.02.013 |
Peter, K., Pätzold, M., Molina-Cuberos, G., Witasse, O., González-Galindo, F., Withers, P., Bird, M. K., Häusler, B., Hinson, D. P., … Tyler, G. L. (2014). The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations. Icarus, 233: 66–82. https://doi.org/10.1016/j.icarus.2014.01.028 |
Sánchezcano, B., Witasse, O., Herraiz, M., Radicella, S. M., Bauer, J., Blelly, P. L., and Rodríguez-Caderot, G. (2012). Retrieval of ionospheric profiles from the Mars Express MARSIS experiment data and comparison with radiooccultation data. Geosci. Instrum. Method Data Syst., 1(1), 77–84. https://doi.org/10.5194/gi-1-77-2012 |
Withers, P., Mendillo, M., Hinson, D. P., and Cahoy, K. (2008). Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. J. Geophys. Res.:Space Phys., 113(A12), A12314. https://doi.org/10.1029/2008JA013636 |
Withers, P., (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027 |
Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res., 117(A12), A12307. https://doi.org/10.1029/2012JA018185 |
Withers, P., Christou, A. A., and Vaubaillon, J. (2013). Meteoric ion layers in the ionospheres of Venus and Mars: Early observations and consideration of the role of meteor showers. Adv. Space Res., 52(7), 1207–1216. https://doi.org/10.1016/j.asr.2013.06.012 |
Withers, P., Moore, L., Cahoy, K., and Beerer, I. (2014). How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci., 101, 77–88. https://doi.org/10.1016/j.pss.2014.06.011 |
Withers, P., Weiner, S., and Ferreri, N. R. (2015). Recovery and validation of Mars ionospheric electron density profiles from Mariner 9. Earth Planets Space, 67,194. https://doi.org/10.1186/s40623-015-0364-2 |
Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res., 95(A10), 17095–17102. https://doi.org/10.1029/JA095iA10p17095 |
Zhang, S. J., Ping, J. S., Han, T. T., Mao, X. F., and Hong, Z. J. (2011). Implementation of the Earth-based planetary radio occultation inversion technique. Sci. China Phys. Mech. Astron., 54(7), 1359–1366. https://doi.org/10.1007/s11433-011-4247-7 |
Zhang, S. J., Cui, J., Guo, P., Li, J. L., Ping, J. S., Jian, N. C., and Zhang, K. F. (2015). Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements. Adv. Space Res., 55(9), 2177–2189. https://doi.org/10.1016/j.asr.2015.01.030 |
Zou, H., Wang, J. S., and Nielsen, E. (2005). Effect of the seasonal variations in the lower atmosphere on the altitude of the ionospheric main peak at Mars. J. Geophys. Res.: Space Phys., 110(A9), A09311. https://doi.org/10.1029/2004JA010963 |
Zou, H., Wang, J. S., and Nielsen, E. (2006). Reevaluating the relationship between the Martian ionospheric peak density and the solar radiation. J. Geophys. Res.: Space Phys., 111(A7), A07305. https://doi.org/10.1029/2005JA011580 |
Zou, H., Lillis, R. J., Wang, J. S., and Nielsen, E. (2011). Determination of seasonal variations in the Martian neutral atmosphere from observations of ionospheric peak height. J. Geophys. Res.: Planets, 116(E9), E09004. https://doi.org/10.1029/2005JA011580 |
Zou, H., Ye, Y. G., Wang, J. S., Nielsen E., Cui J., and Wang X. D. (2016). A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars. J. Geophys. Res.: Space Phys., 121(4), 3464–3475. https://doi.org/10.1002/2015JA022304 |
[1] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[2] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[3] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[4] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[5] |
Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023 |
[6] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[7] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
[8] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[9] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[10] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[11] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[12] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[13] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[14] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[15] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[16] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[17] |
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002 |
[18] |
QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011 |
[19] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[20] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)