Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67.

2017, 1(1): 63-67. doi: 10.26464/epp2017009

A planetary perspective on Earth’s space environment evolution


Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China


College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China


Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Yong Wei,

Received Date: 2017-07-30

The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth’s interior process is contentious. In the past several decades, space weather and space climate have been extensively studied based on either observation data measured directly by man-made instruments or ancient data inferred indirectly from some historical medium of past thousands of years. The acquired knowledge greatly helps us to understand the dynamic processes in the space environment of modern Earth, which has a strong magnetic dipole and an oxygen-rich atmosphere. However, no data is available for ancient space weather and climate (>5 ka). Here, we propose to take the advantage of " space-diversity” to build a " generalized planetary space family”, to reconcile the ancient space environment evolution of planet Earth from modern observations of other planets in our solar system. Such a method could also in turn give us a valuable insight into other planets’ evolution.

Key words: space environment evolution, space weather, generalized planetary space family, space diversity

Biggin, A. J., Piispa, E. J., Pesonen, L. J., Holme, R., Paterson, G. A., Veikkolainen, T., and Tauxe, L. (2015), Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation, Nature, 526(7572), 245-248, doi: 10.1038/nature15523. doi: 10.1038/nature15523

Cade, W. B., III, and Chan-Park, C. (2015), The origin of " Space Weather,” Space Wea., 13(2), 99-103, doi: 10.1002/2014SW001141. doi: 10.1002/2014SW001141

Catling, D. C., Zahnle, K. J., and McKay, C. P. (2001), Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth, Science, 293(5531), 839-843, 10.1126/science.1061976.

Kasting, J. F. (1993), Earth's early atmosphere, Science, 259(5097), 920-926, doi: 10.1126/science.11536547. doi: 10.1126/science.11536547

Keeling, C. D., Whorf, T. P., Wahlen, M., and van der Plicht, J. (1995), Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375(6533), 666-670, doi: 10.1038/375666a0. doi: 10.1038/375666a0

Korte, M., Constable, C., Donadini, F., and Holme, R. (2011), Reconstructing the Holocene geomagnetic field, Earth Planet Sci. Lett., 312(3-4), 497-505, doi: 10.1016/j.jpgl.2011.10.031. doi: 10.1016/j.jpgl.2011.10.031

Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y. N., and Tian, F. (2008), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1-4), 399-436, doi: 10.1007/s11214-008-9413-5. doi: 10.1007/s11214-008-9413-5

Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., and Emmert, J. T. (2006), Global change in the upper atmosphere, Science, 314(5803), 1253-1254, doi: 10.1126/science.1135134. doi: 10.1126/science.1135134

Lundin, R., Lammer, H., and Ribas, I. (2007), Planetary magnetic fields and solar forcing: implications for atmospheric evolution, Space Sci. Rev., 129(1-3), 245-278, doi: 10.1007/s11214-007-9176-4. doi: 10.1007/s11214-007-9176-4

Lyons, T. W., Reinhard, C. T., and Planavsky, N. J. (2014), The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506(7488), 307-315, doi: 10.1038/nature13068. doi: 10.1038/nature13068

Merrill, R. T., and McFadden, P. L. (1999), Geomagnetic polarity transitions, Rev. Geophys., 37(2), 201-226, doi: 10.1029/1998RG900004. doi: 10.1029/1998RG900004

Mursula, K., Usoskin, I. G., and Maris, G. (2007), Introduction to space climate, Adv. Space Res., 40(7), 885-887, doi: 10.1016/j.asr.2007.07.046. doi: 10.1016/j.asr.2007.07.046

Qian, L. Y., Laštovička, J., Roble, R. G., and Solomon, S. C. (2011), Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 116(A2), A00H03, doi: 10.1029/2010JA016317. doi: 10.1029/2010JA016317

Roble, R. G., and Dickinson, R. E. (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16(12), 1441-1444, doi: 10.1029/GL016i012p01441. doi: 10.1029/GL016i012p01441

Schunk, R. W., and Sojka, J. J. (1996). Ionospheric models. In H. Kohl, et al. (Eds.), Modern Ionospheric Science. European Geophysical Society, Germany

Smith, E. J., Davis Jr, L., Coleman Jr, P. J., and Jones, D. E. (1965), Magnetic field measurements near mars, Science, 149(3689), 1241-1242, doi: 10.1126/science.149.3689.1241. doi: 10.1126/science.149.3689.1241

Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., and Beer, J. (2004), Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 431(7012), 1084-1087, doi: 10.1038/nature02995. doi: 10.1038/nature02995

Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., and Bono, R. K. (2015), A Hadean to Paleoarchean geodynamo recorded by single zircon crystals, Science, 349(6247), 521-524, doi: 10.1126/science.aaa9114. doi: 10.1126/science.aaa9114

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A. M., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W. J., Lalanne, X., Langlais, B., Léger, J. M., Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T. (2015), International geomagnetic reference field: the 12th generation, Earth Planet Space, 67, 79, doi: 10.1186/s40623-015-0228-9. doi: 10.1186/s40623-015-0228-9

Tomkins, A. G., Bowlt, L., Genge, M., Wilson, S. A., Brand, H. E. A., and Wykes, J. L. (2016), Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere, Nature, 533(7602), 235-238, doi: 10.1038/nature17678. doi: 10.1038/nature17678

Wang, H., Zhang, J., Lühr, H., and Wei, Y. (2017), Longitudinal modulation of electron and mass densities at middle and auroral latitudes: Effect of geomagnetic field strength, J. Geophys. Res.: Space Phys., 122(6), 6595-6610, doi: 10.1002/2016JA023829. doi: 10.1002/2016JA023829

Wei, Y., Fraenz, M., Dubinin, E., Woch, J., Lühr, H., Wan, W., Zong, Q.-G., Zhang, T. L., Pu, Z. Y., Fu, S. Y., Barabash, S., Lundin, R., and Dandouras, I. (2012a), Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region, J. Geophys. Res.: Space Phys., 117(A3), A03208, doi: 10.1029/2011JA017340. doi: 10.1029/2011JA017340

Wei, Y., Fraenz, M., Dubinin, E., Coates, A. J., Zhang, T. L., Wan, W., Feng, L., Angsmann, A., Opitz, A., Woch, J., Barabash, S., and Lunding, R. (2012b), A teardrop-shaped ionosphere at Venus in tenuous solar wind, Planet. Space Sci., 73(1), 254-261, doi: 10.1016/j.pss.2012.08.024. doi: 10.1016/j.pss.2012.08.024

Wei, Y., Pu, Z. Y., Zong, Q.-G., Wan, W. X., Ren, Z. P., Fraenz, M., Dubinin, E., Tian, F., Shi, Q. Q., Fu, S. Y., and Hong, M. H. (2014), Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction, Earth Planet. Sci. Lett., 394, 94-98, doi: 10.1016/j.jpgl.2014.03.018. doi: 10.1016/j.jpgl.2014.03.018

Yue, X. A., Liu, L. B., Wan, W. X., Wei, Y., and Ren, Z. P. (2008), Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century, J. Geophys. Res.: Space Phys., 113(A10), A10301, doi: 10.1029/2007JA012995. doi: 10.1029/2007JA012995


Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028


SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012


ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011


GuangWen Wang, HaiYan Wang, HongQiang Li, ZhanWu Lu, WenHui Li, TaiRan Xu, 2022: Application of active-source surface waves in urban underground space detection: A case study of Rongcheng County, Hebei, China, Earth and Planetary Physics, 6, 385-398. doi: 10.26464/epp2022039


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038


WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001


Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031


Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics, 4, 493-503. doi: 10.26464/epp2020044


Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046


Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042


YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050


Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055


ChengWei Yang, ChengHu Wang, GuiYun Gao, Pu Wang, 2022: Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton, Earth and Planetary Physics, 6, 123-134. doi: 10.26464/epp2022001


WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052


YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

A planetary perspective on Earth’s space environment evolution

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu