Citation:
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu,
2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67.
doi: 10.26464/epp2017009
2017, 1(1): 63-67. doi: 10.26464/epp2017009
A planetary perspective on Earth’s space environment evolution
1. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
2. | College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
3. | Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China |
The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth’s interior process is contentious. In the past several decades, space weather and space climate have been extensively studied based on either observation data measured directly by man-made instruments or ancient data inferred indirectly from some historical medium of past thousands of years. The acquired knowledge greatly helps us to understand the dynamic processes in the space environment of modern Earth, which has a strong magnetic dipole and an oxygen-rich atmosphere. However, no data is available for ancient space weather and climate (>5 ka). Here, we propose to take the advantage of " space-diversity” to build a " generalized planetary space family”, to reconcile the ancient space environment evolution of planet Earth from modern observations of other planets in our solar system. Such a method could also in turn give us a valuable insight into other planets’ evolution.
Biggin, A. J., Piispa, E. J., Pesonen, L. J., Holme, R., Paterson, G. A., Veikkolainen, T., and Tauxe, L. (2015), Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation, Nature, 526(7572), 245-248, doi: 10.1038/nature15523. doi: 10.1038/nature15523 |
Cade, W. B., III, and Chan-Park, C. (2015), The origin of " Space Weather,” Space Wea., 13(2), 99-103, doi: 10.1002/2014SW001141. doi: 10.1002/2014SW001141 |
Catling, D. C., Zahnle, K. J., and McKay, C. P. (2001), Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth, Science, 293(5531), 839-843, 10.1126/science.1061976. |
Kasting, J. F. (1993), Earth's early atmosphere, Science, 259(5097), 920-926, doi: 10.1126/science.11536547. doi: 10.1126/science.11536547 |
Keeling, C. D., Whorf, T. P., Wahlen, M., and van der Plicht, J. (1995), Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375(6533), 666-670, doi: 10.1038/375666a0. doi: 10.1038/375666a0 |
Korte, M., Constable, C., Donadini, F., and Holme, R. (2011), Reconstructing the Holocene geomagnetic field, Earth Planet Sci. Lett., 312(3-4), 497-505, doi: 10.1016/j.jpgl.2011.10.031. doi: 10.1016/j.jpgl.2011.10.031 |
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y. N., and Tian, F. (2008), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1-4), 399-436, doi: 10.1007/s11214-008-9413-5. doi: 10.1007/s11214-008-9413-5 |
Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., and Emmert, J. T. (2006), Global change in the upper atmosphere, Science, 314(5803), 1253-1254, doi: 10.1126/science.1135134. doi: 10.1126/science.1135134 |
Lundin, R., Lammer, H., and Ribas, I. (2007), Planetary magnetic fields and solar forcing: implications for atmospheric evolution, Space Sci. Rev., 129(1-3), 245-278, doi: 10.1007/s11214-007-9176-4. doi: 10.1007/s11214-007-9176-4 |
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J. (2014), The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506(7488), 307-315, doi: 10.1038/nature13068. doi: 10.1038/nature13068 |
Merrill, R. T., and McFadden, P. L. (1999), Geomagnetic polarity transitions, Rev. Geophys., 37(2), 201-226, doi: 10.1029/1998RG900004. doi: 10.1029/1998RG900004 |
Mursula, K., Usoskin, I. G., and Maris, G. (2007), Introduction to space climate, Adv. Space Res., 40(7), 885-887, doi: 10.1016/j.asr.2007.07.046. doi: 10.1016/j.asr.2007.07.046 |
Qian, L. Y., Laštovička, J., Roble, R. G., and Solomon, S. C. (2011), Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 116(A2), A00H03, doi: 10.1029/2010JA016317. doi: 10.1029/2010JA016317 |
Roble, R. G., and Dickinson, R. E. (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16(12), 1441-1444, doi: 10.1029/GL016i012p01441. doi: 10.1029/GL016i012p01441 |
Schunk, R. W., and Sojka, J. J. (1996). Ionospheric models. In H. Kohl, et al. (Eds.), Modern Ionospheric Science. European Geophysical Society, Germany222 |
Smith, E. J., Davis Jr, L., Coleman Jr, P. J., and Jones, D. E. (1965), Magnetic field measurements near mars, Science, 149(3689), 1241-1242, doi: 10.1126/science.149.3689.1241. doi: 10.1126/science.149.3689.1241 |
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., and Beer, J. (2004), Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 431(7012), 1084-1087, doi: 10.1038/nature02995. doi: 10.1038/nature02995 |
Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., and Bono, R. K. (2015), A Hadean to Paleoarchean geodynamo recorded by single zircon crystals, Science, 349(6247), 521-524, doi: 10.1126/science.aaa9114. doi: 10.1126/science.aaa9114 |
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A. M., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W. J., Lalanne, X., Langlais, B., Léger, J. M., Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T. (2015), International geomagnetic reference field: the 12th generation, Earth Planet Space, 67, 79, doi: 10.1186/s40623-015-0228-9. doi: 10.1186/s40623-015-0228-9 |
Tomkins, A. G., Bowlt, L., Genge, M., Wilson, S. A., Brand, H. E. A., and Wykes, J. L. (2016), Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere, Nature, 533(7602), 235-238, doi: 10.1038/nature17678. doi: 10.1038/nature17678 |
Wang, H., Zhang, J., Lühr, H., and Wei, Y. (2017), Longitudinal modulation of electron and mass densities at middle and auroral latitudes: Effect of geomagnetic field strength, J. Geophys. Res.: Space Phys., 122(6), 6595-6610, doi: 10.1002/2016JA023829. doi: 10.1002/2016JA023829 |
Wei, Y., Fraenz, M., Dubinin, E., Woch, J., Lühr, H., Wan, W., Zong, Q.-G., Zhang, T. L., Pu, Z. Y., Fu, S. Y., Barabash, S., Lundin, R., and Dandouras, I. (2012a), Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region, J. Geophys. Res.: Space Phys., 117(A3), A03208, doi: 10.1029/2011JA017340. doi: 10.1029/2011JA017340 |
Wei, Y., Fraenz, M., Dubinin, E., Coates, A. J., Zhang, T. L., Wan, W., Feng, L., Angsmann, A., Opitz, A., Woch, J., Barabash, S., and Lunding, R. (2012b), A teardrop-shaped ionosphere at Venus in tenuous solar wind, Planet. Space Sci., 73(1), 254-261, doi: 10.1016/j.pss.2012.08.024. doi: 10.1016/j.pss.2012.08.024 |
Wei, Y., Pu, Z. Y., Zong, Q.-G., Wan, W. X., Ren, Z. P., Fraenz, M., Dubinin, E., Tian, F., Shi, Q. Q., Fu, S. Y., and Hong, M. H. (2014), Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction, Earth Planet. Sci. Lett., 394, 94-98, doi: 10.1016/j.jpgl.2014.03.018. doi: 10.1016/j.jpgl.2014.03.018 |
Yue, X. A., Liu, L. B., Wan, W. X., Wei, Y., and Ren, Z. P. (2008), Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century, J. Geophys. Res.: Space Phys., 113(A10), A10301, doi: 10.1029/2007JA012995. doi: 10.1029/2007JA012995 |
[1] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[2] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[3] |
SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012 |
[4] |
ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun, 2021: Statistical properties of kinetic-scale magnetic holes in terrestrial space, Earth and Planetary Physics, 5, 63-72. doi: 10.26464/epp2021011 |
[5] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[6] |
WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001 |
[7] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[8] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[9] |
Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031 |
[10] |
Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics, 4, 493-503. doi: 10.26464/epp2020044 |
[11] |
Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046 |
[12] |
Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042 |
[13] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[14] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)