Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Lamy, L., Cecconi, B., Aicardi, S., and Louis, C. K. (2022). Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al.. Earth Planet. Phys., 6(1), 10–12. http://doi.org/10.26464/epp2022018

2022, 6(1): 10-12. doi: 10.26464/epp2022018

PLANETARY SCIENCES

Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al.

1. 

LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France

2. 

Station de Radioastronomie de Nançay, Observatoire de Paris, Université PSL, CNRS, Univ. Orléans, 18330 Nançay, France

3. 

LAM, Pythéas, Aix Marseille Université, CNRS, CNES, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France

4. 

DIO, UMS2201 CNRS, Observatoire de Paris, Université PSL, 61 avenue de l’Observatoire, 75014, Paris, France

5. 

School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin, Ireland

Corresponding author: Laurent Lamy, laurent.lamy@obspm.fr

Received Date: 2021-10-28
Web Publishing Date: 2022-01-13

In this comment on the article “Locating the source field lines of Jovian decametric radio emissions” by Wang YM et al., 2020, we discuss the assumptions used by the authors to compute the beaming angle of Jupiter’s decametric emissions induced by the moon Io. Their method, relying on multi-point radio observations, was applied to a single event observed on 14th March 2014 by Wind and both STEREO A/B spacecraft from ~5 to ~16 MHz. They have erroneously identified the emission as a northern (Io-B type) instead of a southern one (Io-D type). We encourage the authors to update their results with the correct hemisphere of origin and to test their method on a larger sample of Jupiter-Io emissions.

Key words: planetary magnetosphere; Jupiter; auroral radio emissions; planet-moon interaction

Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., and Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. J. Geophys. Res. :Space Phys., 114(A7), A07224. https://doi.org/10.1029/2009JA014312

Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., . . Hoang, S. (1995). WAVEs: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev., 71(1-4), 231–263. https://doi.org/10.1007/BF00751331

Bougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., . . Zouganelis, I. (2008). S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev., 136(1-4), 487–528. https://doi.org/10.1007/s11214-007-9298-8

Cecconi, B., Bonnin, X., Hoang, S., Maksimovic, M., Bale, S. D., Bougeret, J. L., Goetz, K., Lecacheux, A., Reiner, M. J., … Zarka, P. (2008). STEREO/waves goniopolarimetry. Space Sci. Rev., 136(1-4), 549–563. https://doi.org/10.1007/s11214-007-9255-6

Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res. :Space Phys., 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370

Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., . . Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophys. Res. Lett., 45(6), 2590–2596. https://doi.org/10.1002/2018GL077312

Hess, S., Cecconi, B., and Zarka, P. (2008). Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett., 35(13), L13107. https://doi.org/10.1029/2008GL033656

Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., Bagenal, F., Bolton, S., Connerney, J., . . Zink, J. L. (2017). Generation of the Jovian hectometric radiation: First lessons from Juno. Geophys. Res. Lett., 44(10), 4439–4446. https://doi.org/10.1002/2017GL072923

Louis, C., Louarn, P., Allegrini, F., Kurth, W. S., and Szalay, J. R. (2020). Io and Ganymede-induced decametric emission: in-situ measurements by Juno. In AGU fall meeting abstracts (Vol. 2020, SM049–08).

Louis, C. K. , Lamy, L. , Zarka, P. , Cecconi, B. , Hess, S. L. G. , Bonnin, X. (2017). Simulating Jupiter-satellite decametric emissions with ExPRES: a parametric study. In G. Fischer, et al. (Eds. ), Planetary Radio Emissions VIII (pp. 59-72). Vienna: Austrian Academy of Sciences Press.222

Louis, C. K., Zarka, P., Dabidin, K., Lampson, P. A., Magalhães, F. P., Boudouma, A., Marques, M. S., Cecconi, B. (2021). Latitudinal beaming of Jupiter's radio emissions from Juno/Waves flux density measurements. J. Geophys. Res. :Space Phys., 126(10), e2021JA029435. https://doi.org/10.1029/2021JA029435

Marques, M. S., Zarka, P., Echer, E., Ryabov, V. B., Alves, M. V., Denis, L., and Coffre, A. (2017). Statistical analysis of 26 yr of observations of decametric radio emissions from Jupiter. Astron. Astrophys., 604, A17. https://doi.org/10.1051/0004-6361/201630025

Queinnec, J., and Zarka, P. (1998). Io-controlled decameter arcs and Io-Jupiter interaction. J. Geophys. Res. :Space Phys., 103(A11), 26649–26666. https://doi.org/10.1029/98JA02435

Wang, Y. M., Jia, X. Z., Wang, C. B., Wang, S., and Krupar, V. (2020). Locating the source field lines of Jovian decametric radio emissions. Earth Planet. Phys. 4(2), 95–104. https://doi.org/10.26464/epp2020015

Zarka, P. (1998). Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. :Planets, 103(E9), 20159–20194. https://doi.org/10.1029/98JE01323

Zarka, P., Marques, M. S., Louis, C., Ryabov, V. B., Lamy, L., Echer, E., and Cecconi, B. (2018). Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets. Astron. Astropnhys., 618, A84. https://doi.org/10.1051/0004-6361/201833586

[1]

ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037

[2]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[3]

LongHui Yuan, YuFeng Lin, Chris A. Jones, 2021: Influence of reference states on Jupiter’s dynamo simulations, Earth and Planetary Physics, 5, 305-313. doi: 10.26464/epp2021041

[4]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[5]

YuMing Wang, RuoBing Zheng, XianZhe Jia, ChuanBing Wang, Shui Wang, V. Krupar, 2022: Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”, Earth and Planetary Physics, 6, 13-17. doi: 10.26464/epp2022019

[6]

DongDong Ni, 2020: Signature of helium rain and dilute cores in Jupiter's interior from empirical equations of state, Earth and Planetary Physics, 4, 111-119. doi: 10.26464/epp2020017

[7]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[8]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[9]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[10]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[11]

Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046

[12]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[13]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[14]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[15]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[16]

XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005

[17]

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

[18]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[19]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[20]

Ying-Ying Huang, Jun Cui, Hui-Jun Li, Chong-Yin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics. doi: 10.26464/epp2022005

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al.

Laurent Lamy, Baptiste Cecconi, Stéphane Aicardi, C. K. Louis