Citation:
Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li,
2021: Determination of the local magnitudes of small earthquakes using dense seismic array in the Changning-Zhaotong shale gas field, Southern Sichuan Basin, Earth and Planetary Physics.
doi: 10.26464/epp2021026
doi: 10.26464/epp2021026
Determination of the local magnitudes of small earthquakes using dense seismic array in the Changning-Zhaotong shale gas field, Southern Sichuan Basin
1 Laboratory of Seismology and Physics of the Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
2 National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Mengcheng 233500, China |
3 China Earthquake Networks Center, Beijing 100045, China |
With the development of unconventional shale gas in the southern Sichuan Basin seismicity has increased significantly in the region in recent years. Though the existing regional sparse seismic stations can capture most earthquakes with M_L≥2.5, a great number of smaller earthquakes are often omitted due to the limited detection capacity. With the advent of portable seismic nodes, many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed, and the magnitudes of those earthquakes are key for understanding the local fault reactivation and seismic potentials. However, the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity, and it uses a calibration function with a minimal step of 5 km in the epicentral distance. That is, the current national standard tends to overestimate the local magnitudes for stations in short epicentral distances, and can result in discrepancy in magnitude measurement for dense arrays. In this study, we propose a new local magnitude formula which corrects the overestimated magnitudes in shorter distances, and yields accurate event magnitudes for small earthquakes in the Changning-Zhaotong shale gas field in the southern Sichuan Basin monitored by dense seismic arrays in close proximity. The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3C nodes deployed from the end of February 2019 to early May 2019 in the Changning-Zhaotong shale gas field. The magnitude of completeness (M_C) using the dense array is -0.1, compared to M_C 1.1 by the sparser Chinese Seismic Network (CSN). In addition, using a machine learning detection and picking procedure, we successfully identify and process some 14,000 earthquakes from the continuous waveforms, a ten-fold increase over the catalog recorded by CSN for the same period, and the M_C is further reduced to -0.3 from -0.1 compared to the catalog obtained via manual processing using the same dense array. The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of earthquakes monitored by dense arrays in the shale gas fields in the southern Sichuan Basin in the future, and help to better characterize the local seismic risks and potentials.
[1] |
XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052 |
[2] |
HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006 |
[3] |
JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024 |
[4] |
JinHai Zhang, ZhenXing Yao, 2017: Exact local refinement using Fourier interpolation for nonuniform-grid modeling, Earth and Planetary Physics, 1, 58-62. doi: 10.26464/epp2017008 |
[5] |
Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030 |
[6] |
Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022 |
[7] |
YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038 |
[8] |
Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054 |
[9] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[10] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
[11] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[12] |
Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang, 2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364. doi: 10.26464/epp2019036 |
[13] |
YiRen Chang, ZhiYong Xiao, YiChen Wang, ChunYu Ding, Jun Cui, YuZhen Cai, 2021: An updated constraint on the local stratigraphy at the Chang'E-4 landing site, Earth and Planetary Physics, 5, 19-31. doi: 10.26464/epp2021007 |
[14] |
YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027 |
[15] |
YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030 |
[16] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[17] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[18] |
Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009 |
[19] |
Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027 |
[20] |
YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)