Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhou, B. Z., Xue, X. H., Yi, W., Ye, H. L., Zeng, J., Chen, J. S., Wu, J. F., Chen, T. D., and Dou, X. K. (2022). A comparison of MLT wind between meteor radar chain data and SD-WACCM results. Earth Planet. Phys., 6(5), 451–464. http://doi.org/10.26464/epp2022040

doi: 10.26464/epp2022040

PLANETARY SCIENCES

A comparison of MLT wind between meteor radar chain data and SD-WACCM results

1. 

CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

3. 

Hefei National Laboratory for the Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

4. 

CAS Center for Excellence in Comparative Planetology, Hefei 230026, China

5. 

National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China

6. 

Electronic Information School, Wuhan University, Wuhan 430072, China

Corresponding author: XiangHui Xue, xuexh@ustc.edu.cnWen Yi, yiwen@ustc.edu.cn

Received Date: 2022-01-03
Web Publishing Date: 2022-07-15

A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides long-term horizontal wind observations of the mesosphere and lower thermosphere (MLT) region. In this study, we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by six meteor radar instruments located at Mohe (53.5°N, 122.3°E), Beijing (40.3°N, 116.2°E), Mengcheng (33.4°N, 116.5°E), Wuhan (30.6°N, 114.4°E), Kunming (25.6°N, 108.3°E), and Fuke (19.5°N, 109.1°E) stations. In addition, we compare the wind in the MLT region measured by the meteor radar stations with those simulated by the Whole Atmosphere Community Climate Model (WACCM). In general, the WACCM appears to capture well the seasonal and latitudinal variations in the zonal wind component. In particular, the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases. However, the simulated WACCM meridional wind exhibits differences from the meteor radar observations.

Key words: meteor radar chain, MLT horizontal wind, tide, SD-WACCM.

Becker, E., and Vadas, S. L. (2018). Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model. J. Geophys. Res.:Atmos., 123(5), 2605–2627. https://doi.org/10.1002/2017JD027460

Borchert, S., Zhou, G. D., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D. (2019). The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). Geosci. Model Dev., 12(8), 3541–3569. https://doi.org/10.5194/gmd-12-3541-2019

Day, K. A., and Mitchell, N. J. (2013). Mean winds in the MLT, the SQBO and MSAO over Ascension Island (8°S, 14°W). Atmos. Chem. Phys., 13(18), 9515–9523. https://doi.org/10.5194/acp-13-9515-2013

Dou, X. K., Li, T., Xu, J. Y., Liu, H. L., Xue, X. H., Wang, S., Leblanc, T., McDermid, I. S., Hauchecorne, A., … Russell III, J. M. (2009). Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations. J. Geophys. Res.:Atmos., 114(D20), D20103. https://doi.org/10.1029/2008JD011654

Dowdy, A., Vincent, R. A., Igarashi, K., Murayama, Y., and Murphy, D. J. (2001). A comparison of mean winds and gravity wave activity in the northern and southern polar MLT. Geophys. Res. Lett., 28(8), 1475–1478. https://doi.org/10.1029/2000GL012576

Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., … Vincent, R. A. (2008). An empirical model of the Earth’s horizontal wind fields: HWM07. J. Geophys. Res.:Space Phys., 113(A12), A12304. https://doi.org/10.1029/2008JA013668

Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., … Klenzing, J. H. (2015). An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci., 2(7), 301–319. https://doi.org/10.1002/2014EA000089

Emmert, J. T., Drob, D. P., Shepherd, G. G., Hernandez, G., Jarvis, M. J., Meriwether, J. W., Niciejewski, R. J., Sipler, D. P., and Tepley, C. A. (2008). DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. J. Geophys. Res.:Space Phys., 113(A11), A11319. https://doi.org/10.1029/2008JA013541

Fritts, D. C. (1984). Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys., 22(3), 275–308. https://doi.org/10.https://doi.org/10.1029/RG022i003p002751029/RG022i003p00275

Fritts, D. C., and Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003. https://doi.org/10.https://doi.org/10.1029/2001RG0001061029/2001RG000106

Gong, Y., Ma, Z., Li, C., Lv, X. D., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Yu, Y., and Li, G. Z. (2020). Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017. Earth Planet. Phys., 4(3), 274–284. https://doi.org/10.26464/epp2020033

Gu, S. Y., Hou, X., Qi, J. H., TengChen K. M., and Dou, X. K. (2020). Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming. Earth Planet. Phys., 4(5), 472–478. https://doi.org/10.26464/epp2020046

Guharay, A., Batista, P. P., and Buriti, R. A. (2021). Observations of a quasi-90-day oscillation in the MLT winds and tides over an equatorial station using meteor radar winds. Adv. Space Res., 67(10), 3125–3133. https://doi.org/10.1016/j.asr.2021.02.004

Hall, C. M., Aso, T., Tsutsumi, M., Höffner, J., Sigernes, F., and Holdsworth, D. A. (2006). Neutral air temperatures at 90 km and 70°N and 78°N. J. Geophys. Res.:Atmos., 111(D14), D14105. https://doi.org/10.1029/2005JD006794

Hall, C. M., Dyrland, M. E., Tsutsumi, M., and Mulligan, F. J. (2012). Temperature trends at 90 km over Svalbard, Norway (78°N l6°E), seen in one decade of meteor radar observations. J. Geophys. Res.:Atmos., 117(D8), D08104. https://doi.org/10.1029/2011JD017028

Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., … Vincent, R. A. (1996). Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(13), 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0

Hocking, W. K., Singer, W., Bremer, J., Mitchell, N. J., Batista, P., Clemesha, B., and Donner, M. (2004). Meteor radar temperatures at multiple sites derived with SKiYMET radars and compared to OH, rocket and lidar measurements. J. Atmos. Sol.-Terr. Phys., 66(6-9), 585–593. https://doi.org/10.1016/j.jastp.2004.01.011

Holdsworth, D. A., Reid, I. M., and Cervera, M. A. (2004). Buckland Park all-sky interferometric meteor radar. Radio Sci., 39(5), RS5009. https://doi.org/10.1029/2003RS003014

Holdsworth, D. A., Morris, R. J., Murphy, D. J., Reid, I. M., Burns, G. B., and French, W. J. R. (2006). Antarctic mesospheric temperature estimation using the Davis mesosphere-stratosphere-troposphere radar. J. Geophys. Res., 111(D5), D05108. https://doi.org/10.1029/2005JD006589

Huang, Y. Y., Cui, J., Li, H. J., and Li, C. Y. (2022). Inter-annual variations of 6.5-day planetary waves and their relations with QBO. Earth Planet. Phys., 6(2), 135–148. https://doi.org/10.26464/epp2022005

Jia, M. J., Xue, X. H., Gu, S. Y., Chen, T. D., Ning, B. Q., Wu, J. F., Zeng, X. Y., and Dou, X. K. (2018). Multiyear observations of gravity wave momentum fluxes in the midlatitude mesosphere and lower thermosphere region by meteor radar. J. Geophys. Res.:Space Phys., 123(7), 5684–5703. https://doi.org/10.1029/2018JA025285

Kumar, G. K., and Hocking, W. K. (2010). Climatology of northern polar latitude MLT dynamics: Mean winds and tides. Ann. Geophys., 28(10), 1859–1876. https://doi.org/10.5194/angeo-28-1859-2010

Lamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., … Tyndall, G. K. (2012). CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model. Geosci. Model Dev., 5(2), 369–411. https://doi.org/10.5194/gmd-5-369-2012

Lee, C., Kim, J. H., Jee, G., Lee, W., Song, I. S., and Kim, Y. H. (2016). New method of estimating temperatures near the mesopause region using meteor radar observations. Geophys. Res. Lett., 43(20), 10580–10585. https://doi.org/10.1002/2016GL071082

Li, G. Z., Ning, B. Q., Hu, L. H., Chu, Y. H., Reid, I. M., and Dolman, B. K. (2012). A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. J. Geophys. Res.:Space Phys., 117(A3), A03310. https://doi.org/10.1029/2011JA016847

Li, G. Z., Ning, B. Q., Li, A., Yang, S. P., Zhao, X. K., Zhao, B. Q., and Wan, W. X. (2018). First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations. Earth Planet. Phys., 2, 15–21. https://doi.org/10.26464/epp2018002

Li, N., Chen, J. S., Ding, Z. H., and Zhao, Z. W. (2015). Mean winds observed by the Kunming MF radar in 2008-2010. J. Atmos. Sol.-Terr. Phys., 122, 58–65. https://doi.org/10.1016/j.jastp.2014.10.011

Li, T., Liu, A. Z., Lu, X., Li, Z. H., Franke, S. J., Swenson, G. R., and Dou, X. K. (2012). Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. J. Geophys. Res.:Atmos., 117(D5), D05130. https://doi.org/10.1029/2011JD016123

Liu, L. B., Liu, H. X., Chen, Y. D., Le, H. J., Sun, Y. Y., Ning, B. Q., Hu, L. H., and Wan, W. X. (2016). Variations of the meteor echo heights at Beijing and Mohe, China. J. Geophys. Res.:Space Phys., 122(1), 1117–1127. https://doi.org/10.1002/2016JA023448

Liu, L. B., Liu. H. X., Le, H. J., Chen, Y. D., Sun, Y. Y., Ning, B. Q., Hu, L. H., Wan, W. X., Li, N., and Xiong, J. G. (2017). Mesospheric temperatures estimated from the meteor radar observations at Mohe, China. J. Geophys. Res.:Space Phys., 122(2), 2249–2259. https://doi.org/10.1002/2016JA023776

Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Dong, W. J., Li, G. Z., and Ning, B. Q. (2018). Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results. J. Geophys. Res.:Atmos., 123(17), 9488–9501. https://doi.org/10.1029/2018JD028799

Merkel, A. W., Marsh, D. R., Gettelman, A., and Jensen, E. J. (2009). On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models. Atmos. Chem. Phys., 9(22), 8889–8901. https://doi.org/10.5194/acp-9-8889-2009

Reddy, C. A., and Vijayan, L. (1993). Annual and semiannual oscillations in the equatorial middle atmospheric winds. Adv. Space Res., 13(1), 373–376. https://doi.org/10.1016/0273-1177(93)90039-E

Reid, I. M., Holdsworth, D. A., Morris, R. J., Murphy, D. J., and Vincent, R. A. (2006). Meteor observations using the Davis mesosphere-stratosphere-troposphere radar. J. Geophys. Res.:Space Phys., 111(A5), A05305. https://doi.org/10.1029/2005JA011443

Sato, K., Yasui, R., and Miyoshi, Y. (2018). The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part I:Contributions of different wave types and in situ generation of Rossby waves. J. Atmos. Sci., 75(10), 3613–3633. https://doi.org/10.1175/JAS-D-17-0336.1

Stober, G., Jacobi, C., Matthias, V., Hoffmann, P., and Gerding, M. (2012). Neutral air density variations during strong planetary wave activity in the mesopause region derived from meteor radar observations. J. Atmos. Sol.-Terr. Phys., 74, 55–63. https://doi.org/10.1016/j.jastp.2011.10.007

Stober, G., Kuchar, A., Pokhotelov, D., Liu, H. X., Liu, H. L., Schmidt, H., Jacobi, C., Baumgarten, K., Brown, P., … Mitchell, N. (2021). Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations. Atmos. Chem. Phys., 21(18), 13855–13902. https://doi.org/10.5194/acp-21-13855-2021

Venkateswara Rao, N., Tsuda, T., and Kawatani, Y. (2012a). A remarkable correlation between short period gravity waves and semiannual oscillation of the zonal wind in the equatorial mesopause region. Ann. Geophys., 30(4), 703–710. https://doi.org/10.5194/angeo-30-703-2012

Venkateswara Rao, N., Tsuda, T., Riggin, D. M., Gurubaran, S., Reid, I. M., and Vincent, R. A. (2012b). Long-term variability of mean winds in the mesosphere and lower thermosphere at low latitudes. J. Geophys. Res.:Space Phys., 117(A10), A10312. https://doi.org/10.1029/2012JA017850

Viehl, T. P., Plane, J. M. C., Feng, W., and Höffner, J. (2016). The photolysis of FeOH and its effect on the bottomside of the mesospheric Fe layer. Geophys. Res. Lett., 43(3), 1373–1381. https://doi.org/10.1002/2015GL067241

Yi, W., Xue, X. H., Chen, J. S., Dou, X. K., Chen, T. D., and Li, N. (2016). Estimation of mesopause temperatures at low latitudes using the Kunming meteor radar. Radio Sci., 51(3), 130–141. https://doi.org/10.1002/2015RS005722

Yi, W., Xue, X. H., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B. Q., Li, G. Z., Vincent, R. A., … Dou, X. K. (2019a). Climatology of the mesopause relative density using a global distribution of meteor radars. Atmos. Chem. Phys., 19(11), 7567–7581. https://doi.org/10.5194/acp-19-7567-2019

Yi, W., Xue, X. H., Chen, J. S., Chen, T. D., and Li, N. (2019b). Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER. Earth Planet. Phys., 3(2), 136–146. https://doi.org/10.26464/epp2019013

Yi, W., Xue, X. H., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B. Q., Li, G. Z., Yang, G. T., … Dou, X. K. (2021). Climatology of interhemispheric mesopause temperatures using the high-latitude and middle-latitude meteor radars. J. Geophys. Res.:Atmos., 126(6), e2020JD034301. https://doi.org/10.1029/2020JD034301

Yu, Y., Wan, W. X., Ren, Z. P., Xiong, B., Zhang, Y., Hu, L. H., Ning, B. Q., and Liu, L. B. (2015). Seasonal variations of MLT tides revealed by a meteor radar chain based on Hough mode decomposition. J. Geophys. Res.:Space Phys., 120(8), 7030–7048. https://doi.org/10.1002/2015JA021276

Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 1–11. https://doi.org/10.26464/epp2020024

Zeng, J., Yi, W., Xue, X., Reid, I., Hao, X., Li, N., Chen, J., Chen, T., and Dou, X. (2022). Comparison between the Mesospheric Winds Observed by Two Collocated Meteor Radars at Low Latitudes. Remote Sens., 14, 2354. https://doi.org/10.3390/rs14102354

[1]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[2]

ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041

[3]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029

[4]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[5]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[6]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061

[7]

AiBing Zhang, LingGao Kong, WenYa Li, Lei Li, BinBin Tang, ZhaoJin Rong, Yong Wei, JiJie Ma, YiTeng Zhang, LiangHai Xie, YuXian Wang, JianSen He, Bin Liu, WenJing Wang, Bin Su, JiaWei Li, Xu Tan, Fang Wang, TaiFeng Jin, FuHao Qiao, Peter Wurz, Yan Zhu, YunFei Bai, YiRen Li, XinBo Zhu, YueQiang Sun, YongLiao Zou, Chi Wang, 2022: Tianwen-1 MINPA observations in the solar wind, Earth and Planetary Physics, 6, 1-9. doi: 10.26464/epp2022014

[8]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[9]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[10]

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063

[11]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[12]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[13]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[14]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[15]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[16]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[17]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[18]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[19]

Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038

[20]

Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A comparison of MLT wind between meteor radar chain data and SD-WACCM results

BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, XianKang Dou