Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, and XianKang Dou, 2022: A Comparison of MLT Wind between Meteor Radar Chain and SD-WACCM Results, Earth and Planetary Physics. http://doi.org/10.26464/epp2022040

doi: 10.26464/epp2022040

A Comparison of MLT Wind between Meteor Radar Chain and SD-WACCM Results

1CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China;

2Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China;

3Hefei National Laboratory for the Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;

4CAS Center for Excellence in Comparative Planetology, Hefei, China;

5National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao, China;

6Electronic Information School, Wuhan University, Wuhan, China

Fund Project: the provision of Kunming meteor radar data by the China Research Institute of Radiowave Propagation (CRIRP)This work was supported by the National Natural Science Foundation of China (grants No. 42125402, 41974174, 42074181, 42188101, 41831071, 42174183 and 41904135), the B-type Strategic Priority Program of CAS (grant No. XDB41000000), the Project of Stable Support for Youth Team in Basic Research Field, CAS (grant No. YSBR-018), the Open Research Project of Large Research Infrastructures of CAS - “Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project, the Fundamental Research Funds for the Central Universities (grant No.YD3420002004), the Anhui Provincial Natural Science Foundation (grant no. 2008085MD113), the Joint Open Fund of Mengcheng National Geophysical Observatory (MENGO-202209), the foundation of National Key Laboratory of Electromagnetic Environment (Grant No. JCKY2020210C614240301). We acknowledge for the data storage resources from “National Space Science Data Center, National Science & Technology Infrastructure of China (http://www.nssdc.ac.cn)”, and the provision of Mohe, Beijing, Wuhan and Fuke meteor radar data by the Chinese Meridian Project and STERN (the Solar–Terrestrial Environment Research Network)

A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides long-term horizontal wind observations of the mesosphere and lower thermosphere (MLT) region. In this study, we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by 6 meteor radars located at Mohe (53.5°N, 122.3°E), Beijing (40.3°N, 116.2°E), Mengcheng (33.4°N, 116.5°E), Wuhan (30.6°N, 114.4°E), Kunming (25.6°N, 108.3°E) and Fuke (19.5°N, 109.1°E) stations. In addition, we compare the MLT wind measured by the meteor radars and the simulated by Whole Atmosphere Community Climate Model (WACCM). In general, the WACCM appears to well capture the seasonal and latitudinal variations in the zonal wind component. Especially, the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases. However, the WACCM meridional wind show differences with the meteor radar observations.

Key words: Meteor radar, MLT wind, SD-WACCM

Alexander, M. J., & Teitelbaum, H. (2011). Three-dimensional properties of Andes mountain waves observed by satellite: A case study. Journal of Geophysical Research, 116, D23110. https://doi.org/10.1029/2011JD016151 Becker, E., & Vadas, S. L. (2018). Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model. Journal of Geophysical Reseach: Atmospheres, 123, 2605– 2627. https://doi.org/10.1002/2017JD027460 Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019. a, b, c, d C.A. Reddy, L. Vijayan, Annual and semiannual oscillations in the equatorial middle atmospheric winds, Advances in Space Research, Volume 13, Issue 1, 1993, Pages 373-376, ISSN 0273-1177, https://doi.org/10.1016/0273-1177(93)90039-E. Day, K. A., & Mitchell, N. J. (2013). Mean winds in the MLT, the SQBO and MSAO over Ascension Island (8°S, 14°W). Atmospheric Chemistry and Physics, 13(18), 9515–9523. https://doi.org/10.5194/acp-13-9515-2013 Dou, X., Li, T., Xu, J., Liu, H., Xue, X., Wang, S., Leblanc, T., McDermid, S., Hauchecorne, A., Keckhut, P., Bencherif, H., Heinselman, C., Steinbrecht, W., Mlynczak, M., and Russell III, J.: Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations, J. Geophys. Res., 114, D20103, https://doi.org/10.1029/2008JD011654, 2009 Dowdy, A., Vincent, R. A., Igarashi, K., Murayama, Y., & Murphy, D. J. (2001). A comparison of mean winds and gravity wave activity in the northern and southern polar MLT. Geophysical Research Letters, 28(8), 1475–1478. https://doi.org/10.1029/2000GL012576 Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., et al. (2008). An empirical model of the Earth’s horizontal wind fields: HWM07. Journal of Geophysical Research, 113, A12304. https://doi.org/10.1029/2008JA013668 Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., et al. (2015). An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Science, 2(7), 301–319. https://doi.org/10.1002/2014EA000089 Emmert, J., Drob, D., Shepherd, G., Hernandez, G., Jarvis, M. J., Meriwether, J., et al. (2008). DWM07 global empirical model of upper thermospheric storm-induced disturbance winds. Journal of Geophysical Research, 113, A11319. https://doi.org/10.1029/2008JA013541 Fritts, D. C. (1984), Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys., 22( 3), 275– 308, doi:10.1029/RG022i003p00275. Fritts, D. C., and Alexander, M. J. (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106, 1. Guharay, A., Batista, P.P., Buriti, R.A. (2021), Observations of a quasi-90-day oscillation in the MLT winds and tides over an equatorial station using meteor radar winds, Advances in Space Research, Volume 67, Issue 10, Pages 3125-3133, ISSN 0273-1177, https://doi.org/10.1016/j.asr.2021.02.004. Hall, C., Aso, T., Tsutsumi, M., Hoffner, J., Sigernes, F., and Holdsworth, D.: Neutral air temperatures at 90 km and 70◦ N and 78◦ N, J. Geophys.Res., 111, D14105, https://doi.org/10.1029/2005JD006794, 2006. Hall, C., Dyrland, M., Tsutsumi, M., and Mulligan, F.: Temperature trends at 90 km over Svalbard, Norway (78◦ N l6◦ E), seen in one decade of meteor radar observations, J. Geophys. Res., 117, D08104, https://doi.org/10.1029/2011JD017028, 2012 Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., et al. (1996). Empirical wind models for the upper, middle and lower atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 58(13), 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0 Hocking, W., Singer, W., Bremer, J., Mitchell, N., Batista, P., Clemesha, B., and Donner, M.: Meteor radar temperatures at multiple sites derived with SKiYMET radars and compared to OH, rocket and lidar measurements, J. Atmos. Sol-Terr. Phy., 66, 585–593, 2004. Holdsworth, D., Reid, I., and Cervera, M.: Buckland Park allsky interferometric meteor radar, Radio Sci., 39, RS5009, https://doi.org/10.1029/2003RS003014, 2004. Jia, M., Xue, X., Gu, S., Chen, T., Ning, B., Wu, J., Zeng, X., and Dou, X.: Multiyear observations of gravity wave momentum fluxes in the midlatitude mesosphere and lower thermosphere region by meteor radar, J. Geophys. Res.-Space Phys., 123, 5684–5703, https://doi.org/10.1029/2018JA025285, 2018 Kumar, G. K., & Hocking, W. K. (2010). Climatology of northern polar latitude MLT dynamics: Mean winds and tides. Annales de Geophysique, 28(10), 1859–1876. https://doi.org/10.5194/angeo-28-1859-2010 Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012 Lee, C., Kim, J., Jee, G., Lee, W., Song, I., and Kim, Y.: New method of estimating temperatures near the mesopause region using meteor radar observations, Geophys. Res. Lett., 43, 10580– 10585, https://doi.org/10.1002/2016GL071082, 2016. Li, G., Ning, B., Hu, L., Chu, Y.-H., Reid, I. M., & Dolman, B. K. (2012). A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. Journal of Geophysical Research, 117, A03310. https://doi.org/10.1029/2011JA016847 Li, G., Ning, B., Wan, W., Reid, I. M., Hu, L., Yue, X., Younger, J. P., and Dolman, B. K. (2014), Observational evidence of high-altitude meteor trail from radar interferometer, Geophys. Res. Lett., 41, 6583– 6589, doi:10.1002/2014GL061478. Li, N., Chen, J., Ding, Z., & Zhao, Z. (2015). Mean winds observed by the Kunming MF radar in 2008–2010. Journal of Atmospheric and SolarTerrestrial Physics, 122, 58–65. https://doi.org/10.1016/j.jastp.2014.10.011 Li, T., Liu, A. Z., Lu, X., Li, Z., Franke, S. J., Swenson, G. R., & Dou, X. (2012). Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. Journal of Geophysical Research, 117, D05130. https://doi.org/10.1029/2011JD016123 Liu, L., Liu, H., Chen, Y., Le, H., Sun, Y., Ning, B., Hu, L., and Wan, W.: Variations of the meteor echo heights at Beijing and Mohe, China, J. Geophys. Res.-Space Phys., 121, 2249–2259, https://doi.org/10.1002/2016JA023448, 2016. Liu, L., Liu. H., Le, H., Chen, Y., Sun, Y., Ning, B., Hu, L., Wan, W., Li, N., and Xiong, J.: Mesospheric temperatures estimated from the meteor radar observations at Mohe, China, J. Geophys. Res.-Space Phys., 1117–1127, https://doi.org/10.1002/2016JA023776, 2017 Ma, Z., Gong, Y., Zhang, S., Zhou, Q., Huang, C., Huang, K., et al. (2018). Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results. Journal of Geophysical Research: Atmospheres, 123, 9488– 9501. https://doi.org/10.1029/2018JD028799. Merkel, A. W., Marsh, D. R., Gettelman, A., and Jensen, E. J.: On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models, Atmos. Chem. Phys., 9, 8889–8901, https://doi.org/10.5194/acp-9-8889-2009, 2009. Reid, I. M., Spargo, A. J., Woithe, J. M., Klekociuk, A. R., Younger, J. P., and Sivjee, G. G.: Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site, Ann. Geophys., 35, 567–582, https://doi.org/10.5194/angeo-35-567-2017, 2017. Reid, I., Holdsworth, D., Morris, R., Murphy, D., and Vincent, R.: Meteor observations using the Davis mesospherestratosphere-troposphere radar, J. Geophys. Res., 111, A05305, https://doi.org/10.1029/2005JA011443, 2006. Sato, K., Yasui, R., and Miyoshi, Y.: The Momentum Budget in the Stratosphere, Mesosphere, and Lower Thermosphere. Part I: Con-850 tributions of Different Wave Types and In Situ Generation of Rossby Waves, Journal of the Atmospheric Sciences, 75, 3613–3633, https://doi.org/10.1175/JAS-D-17-0336.1, https://doi.org/10.1175/JAS-D-17-0336.1, 2018 Stober, G., Jacobi, C., Matthias, V., Hoffmann, P., and Gerding, M.: Neutral air density variations during strong planetary wave activity in the mesopause region derived from meteor radar observations, J. Atmos. Sol.-Terr. Phy., 74, 55–63, 2012. Stober, G., Kuchar, A., Pokhotelov, D., Liu, H., Liu, H.-L., Schmidt, H., Jacobi, C., Baumgarten, K., Brown, P., Janches, D., Murphy, D., Kozlovsky, A., Lester, M., Belova, E., Kero, J., and Mitchell, N.: Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations, Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, 2021. Venkateswara Rao, N., et al. (2012). "A remarkable correlation between short period gravity waves and semiannual oscillation of the zonal wind in the equatorial mesopause region." Ann. Geophys. 30(4): 703-710. Venkateswara Rao, N., Tsuda, T., Riggin, D. M., Gurubaran, S., Reid, I. M., & Vincent, R. A. (2012). Long-term variability of mean winds in the mesosphere and lower thermosphere at low latitudes. Journal of Geophysical Research, 117, A10312. https://doi.org/10.1029/2012JA017850 Viehl, T. P., Plane, J. M. C., Feng, W., and Höffner, J.: The photolysis of FeOH and its effect on the bottomside of the mesospheric Fe layer, Geophys. Res. Lett., 43, 1373–1381, https://doi.org/10.1002/2015GL067241, 2016. Yi, W., Xue, X. H., Chen, J. S., Dou, X. K., Chen, T. D., Li, N (2016), Estimation of mesopause temperatures at low latitudes using the Kunming meteor radar, Radio Sci., doi: 10.1002/2015RS005722 Yi, W., Xue, X., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B., Li, G., Vincent, R. A., Chen, J., Wu, J., Chen, T., and Dou, X.: Climatology of the mesopause relative density using a global distribution of meteor radars, Atmospheric Chemistry and Physics, 19, 7567-7581, https://doi.org/10.5194/acp-19-7567-2019, 2019a. Yi, W., Xue, X., Chen, J., Chen, T., and Li, N.: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013, 2019b. Yi, W., Xue, X., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., et al. (2021). Climatology of interhemispheric mesopause temperatures using the high-latitude and middle-latitude meteor radars. Journal of Geophysical Research: Atmospheres, 126, e2020JD034301. https://doi.org/10.1029/2020JD034301 Yu, Y., Wan, W. X., Ren, Z. P., Xiong, B., Zhang, Y., Hu, L. H., et al. (2015). Seasonal variations of MLT tides revealed by a meteor radar chain based on Hough mode decomposition. Journal of Geophysical Research: Space Physics, 120, 7030–7048. https://doi.org/10.1002/2015JA021276

[1]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[2]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[3]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[4]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061

[5]

AiBing Zhang, LingGao Kong, WenYa Li, Lei Li, BinBin Tang, ZhaoJin Rong, Yong Wei, JiJie Ma, YiTeng Zhang, LiangHai Xie, YuXian Wang, JianSen He, Bin Liu, WenJing Wang, Bin Su, JiaWei Li, Xu Tan, Fang Wang, TaiFeng Jin, FuHao Qiao, Peter Wurz, Yan Zhu, YunFei Bai, YiRen Li, XinBo Zhu, YueQiang Sun, YongLiao Zou, Chi Wang, 2022: Tianwen-1 MINPA observations in the solar wind, Earth and Planetary Physics, 6, 1-9. doi: 10.26464/epp2022014

[6]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[7]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[8]

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063

[9]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[10]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[11]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[12]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[13]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029

[14]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[15]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[16]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[17]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[18]

Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038

[19]

Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A Comparison of MLT Wind between Meteor Radar Chain and SD-WACCM Results

BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, and XianKang Dou