Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

2019, 3(4): 305-313. doi: 10.26464/epp2019032

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves

1. 

School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. 

Department of Physics, University of Alberta, Edmonton, Alberta T6G2J1, Canada

3. 

School of Space Science and Physics, Shandong University, Weihai 264209, China

4. 

Center for Space Physics, Boston University, Boston, Massachusetts 02215, USA

Corresponding author: Xu-Zhi Zhou, xuzhi.zhou@gmail.com

Received Date: 2019-04-18
Web Publishing Date: 2019-07-01

In Earth's high-latitude ionosphere, the poleward motion of east–west elongated auroral arcs has been attributed to standing hydromagnetic waves, especially when the auroral arcs appear quasi-periodically with a recurrence time of a few minutes. The validation of this scenario requires spacecraft observations of ultra-low-frequency hydromagnetic waves in the magnetosphere and simultaneous observations of poleward-moving auroral arcs near the spacecraft footprints. Here we present the first observational evidence from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission and the conjugated all-sky imager to support the scenario that standing hydromagnetic waves can generate the quasi-periodic appearance of poleward-moving auroral arcs. In this specific event, the observed waves were toroidal branches of the standing hydromagnetic waves, which were excited by a pulse in the solar wind dynamic pressure. Multi-spacecraft measurements from THEMIS also suggest higher wave frequencies at lower L shells (consistent with the distribution of magnetic field line eigenfrequencies), which indicates that the phase difference across latitudes would increase with time. As time proceeds, the enlarged phase difference corresponds to a lower propagation speed of the auroral arcs, which agrees very well with the ground-based optical data.

Key words: poleward-moving auroral arcs, ULF waves, standing hydromagnetic waves, field-aligned currents, solar wind dynamic pressure pulse

Angelopoulos, V. (2008). The THEMIS mission. Space Sci. Rev., 141(1-4), 5–34. https://doi.org/10.1007/s11214-008-9336-1

Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., … Wiedemann, M. (2008). The THEMIS fluxgate magnetometer. Space Sci. Rev., 141(1-4), 235–264. https://doi.org/10.1007/s11214-008-9365-9

Baker, K. B., and Wing, S. (1989). A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res., 94(A7), 9139–9143. https://doi.org/10.1029/JA094iA07p09139

Chen, L., and Hasegawa, A. (1974). A theory of long-period magnetic pulsations: 2. Impulse excitation of surface eigenmode. J. Geophys. Res., 79(7), 1033–1037. https://doi.org/10.1029/JA079i007p01033

Farrell, W. M., Thompson, R. F., Lepping, R. P., and Byrnes, J. B. (1995). A method of calibrating magnetometers on a spinning spacecraft. IEEE Trans. Magn., 31(2), 966–972. https://doi.org/10.1109/20.364770

Gloeckler, G., Balsiger, H., Bürgi, A., Bochsler, P., Fisk, L. A., Galvin, A. B., Geiss, J., Gliem, F., Hamilton, D. C., … Wilken, B. (1995). The solar WIND and suprathermal ion composition investigation on the wind spacecraft. Space Sci. Rev., 71(1-4), 79–124. https://doi.org/10.1007/BF00751327

Greenwald, R. A., and Walker, A. D. M. (1980). Energetics of long period resonant hydromagnetic waves. Geophys. Res. Lett., 7(10), 745–748. https://doi.org/10.1029/GL007i010p00745

Hartinger, M., Angelopoulos, V., Moldwin, M. B., Glassmeier, K. H., and Nishimura, Y. (2011). Global energy transfer during a magnetospheric field line resonance. Geophys. Res. Lett., 38(12), L12101. https://doi.org/10.1029/2011GL047846

Hasegawa, A. (1976). Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res., 81(28), 5083–5090. https://doi.org/10.1029/JA081i028p05083

Kivelson, M. G., and Southwood, D. J. (1985). Resonant ULF waves: a new interpretation. Geophys. Res. Lett., 12(1), 49–52. https://doi.org/10.1029/GL012i001p00049

Kozlovsky, A., and Kangas, J. (2002). Motion and origin of noon high-latitude poleward moving auroral arcs on closed magnetic field lines. J. Geophys. Res., 107(A2), 1017. https://doi.org/10.1029/2001JA900145

Lyatsky, W., Elphinstone, R. D., Pao, Q., and Cogger, L. L. (1999). Field line resonance interference model for multiple auroral arc generation. J. Geophys. Res., 104(A1), 263–268. https://doi.org/10.1029/1998JA900027

Mann, I. R. (1997). On the internal radial structure of field line resonances. J. Geophys. Res., 102(A12), 27109–27119. https://doi.org/10.1029/97JA02385

McFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., Turin, P., Marckwordt, M., and Angelopoulos, V. (2008). The THEMIS ESA plasma instrument and in-flight calibration. Space Sci. Rev., 141(1-4), 277–302. https://doi.org/10.1007/s11214-008-9440-2

Milan, S. E., Yeoman, T. K., Lester, M., Moen, J., and Sandholt, P. E. (1999). Post-noon two-minute period pulsating aurora and their relationship to the dayside convection pattern. Ann. Geophys., 17(7), 877–891. https://doi.org/10.1007/s00585-999-0877-8

Milan, S. E., Sato, N., Ejiri, M., and Moen, J. (2001). Auroral forms and the field-aligned current structure associated with field line resonances. J. Geophys. Res., 106(A11), 25825–25833. https://doi.org/10.1029/2001JA900077

Rae, I. J., Donovan, E. F., Mann, I. R., Fenrich, F. R., Watt, C. E. J., Milling, D. K., Lester, M., Lavraud, B., Wild, J. A., … Balogh, A. (2005). Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval. J. Geophys. Res., 110(A12), A12211. https://doi.org/10.1029/2005JA011007

Rankin, R., Kabin, K., Lu, J. Y., Mann, I. R., Marchand, R., Rae, I. J., Tikhonchuk, V. T., and Donovan, E. F. (2005). Magnetospheric field-line resonances: ground-based observations and modeling. J. Geophys. Res., 110(A10), A10S09. https://doi.org/10.1029/2004JA010919

Rankin, R., Kabin, K., and Marchand, R. (2006). Alfvénic field line resonances in arbitrary magnetic field topology. Adv. Space Res., 38(8), 1720–1729. https://doi.org/10.1016/j.asr.2005.09.034

Samson, J. C., Harrold, B. G., Ruohoniemi, J. M., Greenwald, R. A., and Walker, A. D. M. (1992). Field line resonances associated with MHD waveguides in the magnetosphere. Geophys. Res. Lett., 19(5), 441–444. https://doi.org/10.1029/92GL00116

Samson, J. C., Cogger, L. L., and Pao, Q. (1996). Observations of field line resonances, auroral arcs, and auroral vortex structures. J. Geophys. Res., 101(A8), 17373–17383. https://doi.org/10.1029/96JA01086

Samson, J. C., Rankin, R., and Tikhonchuk, V. T. (2003). Optical signatures of auroral arcs produced by field line resonances: comparison with satellite observations and modeling. Ann. Geophys., 21(4), 933–945. https://doi.org/10.5194/angeo-21-933-2003

Sarris, T. E., Liu, W., Kabin, K., Li, X., Elkington, S. R., Ergun, R., Rankin, R., Angelopoulos, V., Bonnell, J., … Auster, U. (2009). Characterization of ULF pulsations by THEMIS. Geophys. Res. Lett., 36(4), L04104. https://doi.org/10.1029/2008GL036732

Sarris, T. E., Liu, W., Li, X., Kabin, K., Talaat, E. R., Rankin, R., Angelopoulos, V., Bonnell, J., and Glassmeier, K. H. (2010). THEMIS observations of the spatial extent and pressure-pulse excitation of field line resonances. Geophys. Res. Lett., 37(15), L15104. https://doi.org/10.1029/2010GL044125

Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22(3), 483–491. https://doi.org/10.1016/0032-0633(74)90078-6

Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., … Wahlund, J. E. (2000). Small scale Alfvénic structure in the aurora. Space Sci. Rev., 92(3-4), 423–533. https://doi.org/10.1023/A:1005207202143

Tsyganenko, N. A., and Stern, D. P. (1996). Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res., 101(A12), 27187–27198. https://doi.org/10.1029/96JA02735

Zhou, X. Z., Wang, Z. H., Zong, Q. G., Rankin, R., Kivelson, M. G., Chen, X. R., Blake, J. B., Wygant, J. R., and Kletzing, C. A. (2016). Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations. J. Geophys. Res., 121(4), 3254–3263. https://doi.org/10.1002/2016JA022447

Zong, Q. G., Rankin, R., and Zhou, X. Z. (2017). The interaction of ultra-low-frequency Pc3-5 waves with charged particles in Earth’s magnetosphere. Rev. Mod. Plasma Phys., 1, 10. https://doi.org/10.1007/s41614-017-0011-4

[1]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[2]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[3]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[4]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[5]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[6]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[7]

XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005

[8]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics. doi: 10.26464/epp2019040

[9]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[10]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

[11]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[12]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[13]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[14]

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

[15]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[16]

Elizabeth A. Silber, 2018: Deployment of a short-term geophysical field survey to monitor acoustic signals associated with the Windsor Hum, Earth and Planetary Physics, 2, 351-358. doi: 10.26464/epp2018032

[17]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

[18]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen