Citation:
Zhang, H., Wang, Y. B., and Lu, J. Y. (2022). Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere. Earth Planet. Phys., 6(4), 1–11. http://doi.org/10.26464/epp2022032
doi: 10.26464/epp2022032
Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere
1. | Institute of Space Weather, Nanjing University of Information Science & Technology, Nanjing 210044, China |
2. | Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China |
We present a statistical study of “trunk-like” structures observed in He+ and O+ in the inner magnetosphere. The main characteristic of these structures is that the energy of the peak flux decreases earthward. Using observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we identify the trunks observed from November 2012 to June 2019 and obtain the universal time, L shell, magnetic local time (MLT), and energy information of each trunk’s root and tip. We then investigate the behavior of trunks in terms of their frequency of occurrence, temporal evolution, spatial and energy distribution, and trunk dependence on different geomagnetic indices. We find that (1) the trunks are always located at L = 1.5−4.0 and have a preferential location mainly concentrated at MLT = 18−24, (2) the sector within MLT = 14−16 is a forbidden zone without trunk roots, and (3) the energy of He+ trunks is the largest near dusk and gradually decreases in the counterclockwise direction, whereas the energy of O+ trunks is relatively evenly distributed with MLT and L. The differences between He+ and O+ trunks are probably due to the different charge exchange and Coulomb collision lifetime. The dependence on different geomagnetic indices indicates that the trunk structures occur more frequently during relatively quiet periods.
Buzulukova, N. Y., Galperin, Y. I., Kovrazhkin, R. A., Glazunov, A. L., Vladimirova, G. A., Stenuit, H., Sauvaud, J. A., and Delcourt, D. C. (2002). Two types of ion spectral gaps in the quiet inner magnetosphere: Interball-2 observations and modeling. Ann. Geophys., 20(3), 349–364. https://doi.org/10.5194/angeo-20-349-2002 |
Buzulukova, N. Y., Kovrazhkin, R. A., Glazunov, A. L., Sauvaud, J. A., Ganushkina, N. Y., and Pulkkinen, T. I. (2003). Stationary nose structures of protons in the inner magnetosphere: observations by the ION instrument onboard the Interball-2 satellite and modeling. Cosmic Res., 41(1), 3–12. https://doi.org/10.1023/a:1022343327565 |
Cao, J. B., Ding, W. Z., Reme, H., Dandouras, I., Dunlop, M., Liu, Z. X., and Yang, J. Y. (2011). The statistical studies of the inner boundary of plasma sheet. Ann. Geophys., 29(2), 289–298. https://doi.org/10.5194/angeo-29-289-2011 |
Dandouras, I., Cao, J. B., and Vallat, C. (2009). Energetic ion dynamics of the inner magnetosphere revealed in coordinated Cluster-Double Star observations. J. Geophys. Res.:Space Phys., 114(A1), A01S90. https://doi.org/10.1029/2007JA012757 |
Denton, M. H., Reeves, G. D., Thomsen, M. F., Henderson, M. G., Friedel, R. H. W., Larsen, B., Skoug, R. M., Funsten, H. O., Spence, H. E., and Kletzing, C. A. (2016). The complex nature of storm-time ion dynamics: transport and local acceleration. Geophys. Res. Lett., 43(19), 10059–10067. https://doi.org/10.1002/2016GL070878 |
Ebihara, Y., Yamauchi, M., Nilsson, H., Lundin, R., and Ejiri, M. (2001). Wedge-like dispersion of sub-keV ions in the dayside magnetosphere: particle simulation and Viking observation. J. Geophys. Res.:Space Phys., 106(A12), 29571–29584. https://doi.org/10.1029/2000JA000227 |
Ebihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Grande, M., Fennell, J. F., Roeder, J. L., Weimer, D. R., and Fritz, T. A. (2004). Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event. Ann. Geophys., 22(4), 1297–1304. https://doi.org/10.5194/angeo-22-1297-2004 |
Ferradas, C. P., Zhang, J. C., Kistler, L. M., and Spence, H. E. (2015). Heavy-ion dominance near Cluster perigees. J. Geophys. Res.:Space Phys., 120(12), 10485–10505. https://doi.org/10.1002/2015JA021063 |
Ferradas, C. P., Zhang, J. C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., Skoug, R., and Funsten, H. (2016a). Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet. Geophys. Res. Lett., 43(22), 11484–11492. https://doi.org/10.1002/2016GL071359 |
Ferradas, C. P., Zhang, J. C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., Skoug, R., and Funsten, H. (2016b). Ion nose spectral structures observed by the Van Allen Probes. J. Geophys. Res.:Space Phys., 121(12), 12025–12046. https://doi.org/10.1002/2016JA022942 |
Fok, M. C., Kozyra, J. U., Nagy, A. F., and Cravens, T. E. (1991). Lifetime of ring current particles due to Coulomb collisions in the plasmasphere. J. Geophys. Res.:Space Phys., 96(A5), 7861–7867. https://doi.org/10.1029/90JA02620 |
Friedel, R. H. W., Korth, H., Henderson, M. G., Thomsen, M. F., and Scudder, J. D. (2001). Plasma sheet access to the inner magnetosphere. J. Geophys. Res.:Space Phys., 106(A4), 5845–5858. https://doi.org/10.1029/2000JA003011 |
Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., … Chen, J. (2013). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes mission. Space Sci. Rev., 179(1-4), 423–484. https://doi.org/10.1007/s11214-013-9968-7 |
Ganushkina, N. Y., Pulkkinen, T. I., Bashkirov, V. F., Baker, D. N., and Li, X. L. (2001). Formation of intense nose structures. Geophys. Res. Lett., 28(3), 491–494. https://doi.org/10.1029/2000GL011955 |
Jang, E. J., Yue, C., Zong, Q. G., Fu, S. Y., and Fu, H. B. (2021). The effect of non-storm time substorms on the ring current dynamics. Earth Planet. Phys., 5(3), 251–258. https://doi.org/10.26464/epp2021032 |
Kessel, R. L., Fox, N. J., and Weiss, M. (2013). The Radiation Belt Storm Probes (RBSP) and space weather. Space Sci. Rev., 179(1), 531–543. https://doi.org/10.1007/s11214-012-9953-6 |
Kistler, L. M., Möbius, E., Klumpar, D. M., Popecki, M. A., Tang, L., Jordanova, V., Klecker, B., Peterson, W. K., Shelley, E. G., … Pfaff, R. F. (1998). FAST/TEAMS observations of charge exchange signatures in ions mirroring at low altitudes. Geophys. Res. Lett., 25(12), 2085–2088. https://doi.org/10.1029/98GL00331 |
Kovrazhkin, R. A., Sauvaud, J. A., and Delcourt, D. C. (1999). INTERBALL-Auroral observations of 0.1–12 keV ion gaps in the diffuse auroral zone. Ann. Geophys., 17(6), 734–742. https://doi.org/10.1007/s00585-999-0734-9 |
Lennartsson, W., Shelley, E. G., Sharp, R. D., Johnson, R. G., and Balsiger, H. (1979). Some initial ISEE-1 results on the ring current composition and dynamics during the magnetic storm of December 11, 1977. Geophys. Res. Lett., 6(6), 483–486. https://doi.org/10.1029/GL006i006p00483 |
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Sci. Rev., 179(1-4), 3–27. https://doi.org/10.1007/s11214-012-9908-y |
Nakayama, Y., Ebihara, Y., Ohtani, S., Gkioulidou, M., Takahashi, K., Kistler, L. M., and Tanaka, T. (2016). Void structure of O+ ions in the inner magnetosphere observed by the Van Allen Probes. J. Geophys. Res.:Space Phys., 121(12), 11698–11713. https://doi.org/10.1002/2016ja023013 |
Newell, P. T., and Gjerloev, J. W. (2011a). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res.:Space Phys., 116(A12), A12211. https://doi.org/10.1029/2011JA016779 |
Newell, P. T., and Gjerloev, J. W. (2011b). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J. Geophys. Res.:Space Phys., 116(A12), A12232. https://doi.org/10.1029/2011JA016936 |
Qu, B. H., Lu, J. Y., Wang, M., Yuan, H. Z., Zhou, Y., and Zhang, H. X. (2021). Formation of the bow shock indentation: MHD simulation results. Earth Planet. Phys., 5(3), 259–269. https://doi.org/10.26464/epp2021033 |
Ren, J., Zong, Q. G., Yue, C., Zhou, X. Z., Fu, S. Y., Spence, H. E., and Funsten, H. O. (2020). Simultaneously formed wedge-like structures of different ion species deep in the inner magnetosphere. J. Geophys. Res.:Space Phys., 125(12), e2020JA028192. https://doi.org/10.1029/2020JA028192 |
Ren, J., Zhou, X. Z., Zong, Q. G., Yue, C., Fu, S. Y., Miyoshi, Y., Zhang, X. X., Asamura, K., and Shinohara, I. (2021). The link between wedge-like and nose-like ion spectral structures in the inner magnetosphere. Geophys. Res. Lett., 48(13), e2021GL093930. https://doi.org/10.1029/2021GL093930 |
Runov, A., Angelopoulos, V., Ganushkina, N., Nakamura, R., McFadden, J., Larson, D., Dandouras, I., Glassmeier, K. H., and Carr, C. (2008). Multi-point observations of the inner boundary of the plasma sheet during geomagnetic disturbances. Geophys. Res. Lett., 35(17), L17S23. https://doi.org/10.1029/2008GL033982 |
Shirai, H., Maezawa, K., Fujimoto, M., Mukai, T., Saito, Y., and Kaya, N. (1997). Monoenergetic ion drop-off in the inner magnetosphere. J. Geophys. Res.:Space Phys., 102(A9), 19873–19881. https://doi.org/10.1029/97JA01150 |
Smith, P. H., and Hoffman, R. A. (1974). Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms. J. Geophys. Res.:Space Phys., 79(7), 966–971. https://doi.org/10.1029/JA079i007p00966 |
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., … Thorne, R. M. (2013). Science goals and overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) suite on NASA’s Van Allen Probes mission. Space Sci. Rev., 179(1-4), 311–336. https://doi.org/10.1007/s11214-013-0007-5 |
Tang, C. L., Wang, X., Ni, B. B., Su, Z. P., and Zhang, J. C. (2022). The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study. Earth Planet. Phys., 6(2), 149–160. https://doi.org/10.26464/epp2022012 |
Thomsen, M. F. (2004). Why Kp is such a good measure of magnetospheric convection. Space Weather, 2(11), S11004. https://doi.org/10.1029/2004SW000089 |
Vallat, C., Ganushkina, N., Dandouras, I., Escoubet, C. P., Taylor, M. G. G. T., Laakso, H., Masson, A., Sauvaud, J. A., Rème, H., and Daly, P. (2007). Ion multi-nose structures observed by Cluster in the inner Magnetosphere. Ann. Geophys., 25(1), 171–190. https://doi.org/10.5194/angeo-25-171-2007 |
Wang, C. P., Lyons, L. R., Angelopoulos, V., Larson, D., McFadden, J. P., Frey, S., Auster, H. U., and Magnes, W. (2008). THEMIS observations of penetration of the plasma sheet into the ring current region during a magnetic storm. Geophys. Res. Lett., 35(17), L17S14. https://doi.org/10.1029/2008GL033375 |
Wang, Y. B., Kistler, L. M., Mouikis, C. G., Zhang, J. C., Lu, J. Y., Welling, D., Rastaetter, L., Bingham, S., Jin, Y. W., … Miyoshi, Y. (2020). Formation of the low-energy “finger” ion spectral structure near the inner edge of the plasma sheet. Geophys. Res. Lett., 47(22), e2020GL089875. https://doi.org/10.1029/2020GL089875 |
Yamauchi, M., Brandt, P. C., Ebihara, Y., Dandouras, I., Nilsson, H., Lundin, R., Rème, H., Vallat, C., Lindquvist, P. A., … Daly, P. W. (2006). Source location of the wedge-like dispersed ring current in the morning sector during a substorm. J. Geophys. Res.:Space Phys., 111(A11), A11S09. https://doi.org/10.1029/2006JA011621 |
Yamauchi, M., Ebihara, Y., Dandouras, I., and Rème, H. (2009). Dual source populations of substorm-associated ring current ions. Ann. Geophys., 27(4), 1431–1438. https://doi.org/10.5194/angeo-27-1431-2009 |
Yamauchi, M., Dandouras, I., Rème, H., and Nilsson, H. (2014). Cluster observations of hot He+ events in the inner magnetosphere. J. Geophys. Res.:Space Phys., 119(4), 2706–2716. https://doi.org/10.1002/2013JA019724 |
Yue, C., Bortnik, J., Chen, L. J., Ma, Q. L., Thorne, R. M., Reeves, G. D., and Spence, H. E. (2017). Transitional behavior of different energy protons based on Van Allen Probes observations. Geophys. Res. Lett., 44(2), 625–633. https://doi.org/10.1002/2016GL071324 |
Yue, C., Zhou, X. Z., Bortnik, J., Zong, Q. G., Li, Y. X., Ren, J., Reeves, G. D., and Spence, H. E. (2021a). Sustained oxygen spectral gaps and their dynamic evolution in the inner magnetosphere. J. Geophys. Res.:Space Phys., 126(4), e2020JA029092. https://doi.org/10.1029/2020JA029092 |
Yue, C., Liu, Y., Zhou, X. Z., Zong, Q. G., Reeves, G. D., and Spence, H. E. (2021b). MLT-dependence of sustained spectral gaps of proton and oxygen in the inner magnetosphere. J. Geophys. Res.:Space Phys., 126(12), e2021JA029935. https://doi.org/10.1029/2021JA029935 |
Zhang, J. C., Kistler, L. M., Spence, H. E., Wolf, R. A., Reeves, G., Skoug, R., Funsten, H., Larsen, B. A., Niehof, J. T., … Luo, H. (2015). “Trunk-like” heavy ion structures observed by the Van Allen Probes. J. Geophys. Res.:Space Phys., 120(10), 8738–8748. https://doi.org/10.1002/2015JA021822 |
Zhou, X. Z., Ren, J., Yang, F., Yue, C., Zong, Q. G., Fu, S. Y., and Wang, Y. F. (2020). On the formation of wedge-like ion spectral structures in the nightside inner magnetosphere. J. Geophys. Res.:Space Phys., 125(12), e2020JA028420. https://doi.org/10.1029/2020JA028420 |
[1] |
K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039 |
[2] |
Yue Shen, QiuYu Wang, WeiLong Rao, WenKe Sun, 2022: Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China contient, Earth and Planetary Physics, 6, 96-107. doi: 10.26464/epp2022009 |
[3] |
Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002 |
[4] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[5] |
ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061 |
[6] |
Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029 |
[7] |
QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011 |
[8] |
BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003 |
[9] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[10] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[11] |
Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055 |
[12] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[13] |
Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012 |
[14] |
Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039 |
[15] |
FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043 |
[16] |
Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015 |
[17] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[18] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[19] |
JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034 |
[20] |
Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu, 2022: Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA, Earth and Planetary Physics. doi: 10.26464/epp2022030 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)