Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, X., Wan, W. X., Cao, J. B., and Ren, Z. P. (2020). Wavenumber-4 spectral component extracted from TIMED/SABER observations. Earth Planet. Phys., 4(5), 436–448doi: 10.26464/epp2020040

doi: 10.26464/epp2020040

SPACE PHYSICS: AERONOMY

Wavenumber-4 spectral component extracted from TIMED/SABER observations

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

School of Space and Environment, Beihang University, Beijing 100083, China

3. 

Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100083, China

4. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

5. 

Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China

6. 

University of the Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Xing Li, lixing@buaa.edu.cn

Received Date: 2020-03-11
Web Publishing Date: 2020-09-25

The wavenumber spectral components WN4 at the mesosphere and low thermosphere (MLT) altitudes (70–10 km) and in the latitude range between ±45° are obtained from temperature data (T) observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instruments on board the National Aeronautics and Space Administration (NASA)’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) spacecraft during the 11-year solar period from 2002 to 2012. We analyze in detail these spectral components WNk and obtain the main properties of their vertical profiles and global structures. We report that all of the wavenumber spectral components WNk occur mainly around 100 km altitude, and that the most prominent component is the wavenumber spectral component WN4 structure. Comparing these long duration temperature data with results of previous investigations, we have found that the yearly variation of spectral component WN4 is similar to that of the eastward propagating non-migrating diurnal tide with zonal wavenumber 3 (DE3) at the low latitudes, and to that of the semi-diurnal tide with zonal wavenumber 2 (SE2) at the mid-latitudes: the amplitudes of the A4 are larger during boreal summer and autumn at the low-latitudes; at the mid-latitudes the amplitudes have a weak peak in March. In addition, the amplitudes of component WN4 undergo a remarkable short period variation: significant day-to-day variation of the spectral amplitudes A4 occurs primarily in July and September at the low-latitudes. In summary, we conclude that the non-migrating tides DE3 and SE2 are likely to be the origins, at the low-latitudes and the mid-latitudes in the MLT region, respectively, of the observed wavenumber spectral component WN4.

Key words: TIMED observations; wavenumber spectral components; non-migrating tides; short period variation

Bruinsma, S. L., and Forbes, J. M. (2010). Anomalous behavior of the thermosphere during solar minimum observed by CHAMP and GRACE. J. Geophys. Res. Space Phys., 115(A11), A11323. https://doi.org/10.1029/2010JA015605

Burrage, M. D., Hagan, M. E., Skinner, W. R., Wu, D. L., and Hays, P. B. (1995). Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophys. Res. Lett., 22(19), 2641–2644. https://doi.org/10.1029/95GL02635

Chang, L. C., Lin, C. H., Yue, J., Liu, J. Y., and Lin, J. T. (2013). Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations. J. Geophys. Res. Space Phys., 118(10), 6651–6665. https://doi.org/10.1002/jgra.50583

Chapman, S., and Lindzen, R. S. (1970). Atmospheric Tides: Thermal and Gravitational. Netherlands: Springer. https://doi.org/10.1007/978-94-010-3399-2222

Chen, Z. Y., and Lü, D. R. (2007). Seasonal variations of the MLT tides in 120°E meridian. Chinese J. Geophys. (in Chinese) , 50(3), 691–700.

England, S. L., Immel, T. J., Sagawa, E., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J. (2006). Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. Space Phys., 111(A10), A10S19. https://doi.org/10.1029/2006JA011795

England, S. L., Immel, T. J., Huba, J. D., Hagan, M. E., Maute, A., and DeMajistre, R. (2010). Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. Space Phys., 115(A5), A05308. https://doi.org/10.1029/2009JA014894

Forbes, J. M., Russell, J., Miyahara, S., Zhang, X., Palo, S., Mlynczak, M., Mertens, C. J., and Hagan, M. E. (2006). Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July-September 2002. J. Geophys. Res. Space Phys., 111(A10), A10S06. https://doi.org/10.1029/2005JA011492

Forbes, J. M., and Wu, D. (2006). Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J. Atmos. Sci., 63(7), 1776–1797. https://doi.org/10.1175/JAS3724.1

Forbes, J. M., Zhang, X., Palo, S., Russell, J., Mertens, C. J., and Mlynczak, M. (2008). Tidal variability in the ionospheric dynamo region. J. Geophys. Res. Space Phys., 113(A2), A02310. https://doi.org/10.1029/2007JA012737

Friedman, J. S., Zhang, X. L., Chu, X. Z., and Forbes, J. M. (2009). Longitude variations of the solar semidiurnal tides in the mesosphere and lower thermosphere at low latitudes observed from ground and space. J. Geophys. Res. Atmos., 114(D11), D11114. https://doi.org/10.1029/2009JD011763

Garcia, R. R., Lieberman, R., Russell Ⅲ, J. M., and Mlynczak, M. G. (2005). Large-scale waves in the mesosphere and lower thermosphere observed by SABER. J. Atmos. Sci., 62(12), 4384–4399. https://doi.org/10.1175/JAS3612.1

Gu, S. Y., Li, T., Dou, X. K., Wu, Q., Mlynczak, M. G., and Russell Ⅲ, J. M. (2013). Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI. J. Geophys. Res. Atmos., 118(4), 1624–1639. https://doi.org/10.1002/jgrd.50191

Hagan, M. E., and Forbes, J. M. (2002). Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. Atmos., 107(D24), ACL 6-1–ACL 6-15. https://doi.org/10.1029/2001JD001236

Hagan, M. E., and Forbes, J. M. (2003). Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. Space Phys., 108(A2), 1062. https://doi.org/10.1029/2002JA009466

Hagan, M. E., Maute, A., and Roble, R. G. (2009). Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res. Apce Phys., 114(A1), A01302. https://doi.org/10.1029/2008JA013637

Hartman, W. A., and Heelis, R. A. (2007). Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. Space Phys., 112(A3), A03305. https://doi.org/10.1029/2006JA011773

Häusler, K., and Lühr, H. (2009). Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann. Geophys., 27(7), 2643–2652. https://doi.org/10.5194/angeo-27-2643-2009

Häusler, K., Lühr, H, Hagan, M. E., Maute, A., and Roble, R. G. (2010). Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J. Geophys. Res. Atmos., 115(D1), D00I08. https://doi.org/10.1029/2009JD012394

Hitchman, M. H., and Leovy, C. B. (1985). Diurnal tide in the equatorial middle atmosphere as seen in LIMS temperatures. J. Atmos. Sci., 42(6), 557–561. https://doi.org/10.1175/1520-0469(1985)042<0557:DTITEM>2.0.CO;2

Huang, F. T., and Reber, C. A. (2003). Seasonal behavior of the semidiurnal and diurnal tides, and mean flows at 95 km, based on measurements from the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res. Atmos., 108(D12), 4360. https://doi.org/10.1029/2002JD003189

Huang, F. T., and Reber, C. A. (2004). Nonmigrating semidiurnal and diurnal tides at 95 km based on wind measurements from the High Resolution Doppler Imager on UARS. J. Geophys. Res. Atmos., 109(D10), D10110. https://doi.org/10.1029/2003JD004442

Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J. (2006). Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett., 33(15), L15108. https://doi.org/10.1029/2006GL026161

John, S. R., and Kumar, K. K. (2011). TIMED/SABER observations of global cold point mesopause variability at diurnal and planetary wave scales. J. Geophys. Res. Space Phys., 116(A6), A06314. https://doi.org/10.1029/2010JA015945

Khattatov, B. V., Geller, M. A., Yubin, V. A., and Hays, P. B. (1997). Diurnal migrating tide as seen by the high-resolution Doppler imager/UARS: 2. Monthly mean global zonal and vertical velocities, pressure, temperature, and inferred dissipation. J. Geophys. Res. Atmos., 102(D4), 4423–4435. https://doi.org/10.1029/96JD03654

Kil, H., Oh, S. J., Kelley, M. C., Paxton, L. J., England, S. L., Talaat, E., Min, K. W., and Su, S. Y. (2007). Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett., 34(14), L14110. https://doi.org/10.1029/2007GL030018

Killeen, T. L., Wu, Q., Solomon, S. C., Ortland, D. A., Skinner, W. R., Niciejewski, R. J., and Gell, D. A. (2006). TIMED Doppler interferometer: Overview and recent results. J. Geophys. Res. Space Phys., 111(A10), A10S01. https://doi.org/10.1029/2005JA011484

Lin, C. H., Hsiao, C. C., Liu, J. Y., and Liu, C. H. (2007). Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure. J. Geophys. Res. Space Phys., 112(A12), A12305. https://doi.org/10.1029/2007JA012455

Liu, H. X., Yamamotom, M., and Lühr, H. (2009). Wave-4 pattern of the equatorial mass density anomaly: A thermospheric signature of tropical deep convection. Geophys. Res. Lett., 36(18), L18104. https://doi.org/10.1029/2009GL039865

Lühr, H., Häusler, K., and Stolle, C. (2007). Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett., 34(16), L16102. https://doi.org/10.1029/2007GL030639

Manson, A. H., Luo, Y., and Meek, C. (2002). Global distributions of diurnal and semi-diurnal tides: observations from HRDI-UARS of the MLT region. Ann. Geophys., 20(11), 1877–1890. https://doi.org/10.5194/angeo-20-1877-2002

McLandress, C., Rochon, Y., Shepherd, G. G., Solheim, B. H., Thuillier, G., and Vial, F. (1994). The meridional wind component of the thermospheric tide observed by WINDII on UARS. Geophys. Res. Lett., 21(22), 2417–2420. https://doi.org/10.1029/94GL02367

McLandress, C., Shepherd, G. G., and Solheim, B. H. (1996). Satellite observations of thermospheric tides: Results from the wind imaging interferometer on UARS. J. Geophys. Res. Atmos., 101(D2), 4093–4114. https://doi.org/10.1029/95JD03359

Miyoshi, Y., Jin, H., Fujiwara, H., Shinagawa, H., and Liu, H. X. (2012). Wave-4 structure of the neutral density in the thermosphere and its relation to atmospheric tides. J. Atmos. Sol.-Terr. Phys., 90–91, 45–51. https://doi.org/10.1016/j.jastp.2011.12.002

Mu, W. F., Wan, W. X., Ren, Z. P., and Xiong, J. G. (2010). Correlation between ionospheric longitudinal harmonic components and upper atmospheric tides. Chin. Sci. Bull., 55(35), 4037–4045. https://doi.org/10.1007/s11434-010-4205-1

Mukhtarov, P., Pancheva, D., and Andonov, B. (2009). Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J. Geophys. Res. Space Phys., 114(A2), A02309. https://doi.org/10.1029/2008JA013759

Oberheide, J., Wu, Q., Killeen, T. L., Hagan, M. E., and Roble, R. G. (2006). Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: Monthly climatologies and seasonal variations. J. Geophys. Res. Space Phys., 111(A10), A10S03. https://doi.org/10.1029/2005JA011491

Oberheide, J., Wu, Q., Killeen, T. L., Hagan, M. E., and Roble, R. G. (2007). A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data. J. Atmos. Sol.-Terr. Phys., 69(17-18), 2203–2218. https://doi.org/10.1016/j.jastp.2007.05.010

Oberheide, J., and Forbes, J. M. (2008). Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys. Res. Lett., 35(4), L04816. https://doi.org/10.1029/2007GL032397

Oberheide, J., Forbes, J. M., Häusler, K., Wu, Q., and Bruinsma, S. L. (2009). Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects. J. Geophys. Res. Atmos., 114(D1), D00I05. https://doi.org/10.1029/2009JD012388

Oberheide, J., Forbes, J. M., Zhang, X., and Bruinsma, S. L. (2011). Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: What contributes to the "wave 4"?. J. Geophys. Res. Space Phys., 116(A1), A01306. https://doi.org/10.1029/2010JA015911

Pancheva, D., Mukhtarov, P., and Andonov, B. (2010). Global structure, seasonal and interannual variability of the eastward propagating tides seen in the SABER/TIMED temperatures (2002–2007). Ann. Geophys., 46(3), 257–274. https://doi.org/10.1016/j.asr.2010.03.026

Pancheva, D., and Mukhtarov, P. (2012). Global response of the ionosphere to atmospheric tides forced from below: recent progress based on satellite measurements. Global tidal response of the ionosphere. Space Sci. Rev., 168(1–4), 175–209. https://doi.org/10.1007/s11214-011-9837-1

Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell Ⅲ, J. M., Smith, A. K., … Thompson, R. E. (2008). Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. Atmos., 113(D17), D17101. https://doi.org/10.1029/2008JD010013

Ren, Z. P., Wan, W. X., Liu, L. B., and Xiong, J. G. (2009). Intra-annual variation of wave number 4 structure of vertical E × B drifts in the equatorial ionosphere seen from ROCSAT-1. J. Geophys. Res. Space Phys., 114(A5), A05308. https://doi.org/10.1029/2009JA014060

Sagawa, E., Immel, T. J., Frey, H. U., and Mende, S. B. (2005). Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. Space Phys., 110(A11), A11302. https://doi.org/10.1029/2004JA010848

Wan, W., Liu, L., Pi, X., Zhang, M. L., Ning, B., Xiong, J., and Ding, F. (2008). Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys. Res. Lett., 35(12), L12104. https://doi.org/10.1029/2008GL033755

Wan, W., Xiong, J., Ren, Z., Liu, L., Zhang, M. L., Ding, F., Ning, B., Zhao, B., and Yue, X. (2010). Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide. J. Geophys. Res. Space Phys., 115(A11), A11303. https://doi.org/10.1029/2010JA015527

Wu, Q., Ortland, D. A., Killeen, T. L., Roble, R. G., Hagan, M. E., Liu, H. L., Solomon, S. C., Xu, J. Y., Skinner, W. R., and Niciejewski, R. J. (2008). Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 2. Nonmigrating tide. J. Geophys. Res. Space Phys., 113(A5), A05309. https://doi.org/10.1029/2007JA012543

Xu, J. Y., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G. Y., Mlynczak, M. G., Russell Ⅲ, J. M., and Franke, S. J. (2009). Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res. Atmos., 114(D13), D13107. https://doi.org/10.1029/2008JD011298

Zhang, X. L., Forbes, J. M., Hagan, M. E., Russell Ⅲ, J. M., Palo, S. E., Mertens, C. J., and Mlynczak, M. G. (2006). Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res. Space Phys., 111(A10), A10S08. https://doi.org/10.1029/2005JA011504

[1]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[2]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics. doi: 10.26464/epp2020049

[3]

Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

[4]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[5]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[6]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[7]

ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007

[8]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[9]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[10]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[11]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[12]

Elizabeth A. Silber, 2018: Deployment of a short-term geophysical field survey to monitor acoustic signals associated with the Windsor Hum, Earth and Planetary Physics, 2, 351-358. doi: 10.26464/epp2018032

[13]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[14]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[15]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[16]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[17]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[18]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

[19]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Wavenumber-4 spectral component extracted from TIMED/SABER observations

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren