Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Xing, L. L., Liu, Z. W., Jia, J. G., Wu, S. Q., Chen, Z. S. and Niu, X. W. (2021). Far-field coseismic gravity changes related to the 2015 M W7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in Chinese mainland. Earth Planet. Phys., 5(2), 141–148doi: 10.26464/epp2021018

2021, 5(2): 141-148. doi: 10.26464/epp2021018

GEODESY AND GRAVITY

Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in Chinese mainland

1. 

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

2. 

State Key Laboratory of Geodesy and Earth’s Dynamics, Chinese Academy of Sciences, Wuhan 430077, China

3. 

Hubei Earthquake Agency, Wuhan 430071, China

4. 

School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

5. 

National Institute of Metrology, China, Beijing 100029, China

Corresponding author: LeLin Xing, llxing@apm.ac.cnXiaoWei Niu, niuxiaowei@apm.ac.cn

Received Date: 2020-11-19
Web Publishing Date: 2021-03-01

Using data from five SGs at four stations in Chinese mainland, obvious permanent gravity changes caused by the 2015 MW7.8 Nepal (Gorkha) earthquake were detected. We analyzed the gravity effects from ground vertical deformation (VD) using co-site continuous GPS (cGPS) data collocated at the Lijiang and the Wuhan station, and hydrological effects using GLDAS models and groundwater level records. After removing these effects, SG observations before and after the earthquake revealed obvious permanent gravity changes: −3.0 μGal, 7.3 μGal and 8.0 μGal at Lhasa, Lijiang and Wuhan station, respectively. We found that the gravity changes cannot be explained by the results of dislocation theory.

Key words: the 2015 Nepal earthquake; superconducting gravimeter; coseismic gravity change

Avouac, J. P., Meng, L. S., Wei, S. J., Wang, T., and Ampuero, J. P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci., 8(9), 708–711. https://doi.org/10.1038/ngeo2518

Creutzfeldt, B., Güntner, A., Klügel, T., and Wziontek, H. (2008). Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany. Geophysics, 73(6), WA95–WA104. https://doi.org/10.1190/1.2992508

Creutzfeldt, B., Güntner, A., Thoss, H., Merz, B., and Wziontek, H. (2010). Measuring the effect of local water storage changes on in situ gravity observations: case study of the Geodetic Observatory Wettzell, Germany. Water Resour. Res., 46(8), W08531. https://doi.org/10.1029/2009WR008359

Dong, J., Cambiotti, G., Wen, H. J., Sabadini, R., and Sun, W. K. (2021). Treatment of discontinuities inside Earth models: effects on computed coseismic deformations. Earth Planet. Phys., 5(1), 90–104. https://doi.org/10.26464/epp2021010

Han, S. C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C. Y. (2006). Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 313(5787), 658–662. https://doi.org/10.1126/science.1128661

Heki, K., and Matsuo, K. (2010). Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry. Geophys. Res. Lett., 37(24), L24306. https://doi.org/10.1029/2010GL045335

Imanishi, Y., Sato, T., Higashi, T., Sun, W. K., and Okubo, S. (2004). A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science, 306(5695), 476–478. https://doi.org/10.1126/science.1101875

Imanishi, Y., Tamura, Y., Ikeda., H., and Okubo, S. (2009). Permanent gravity changes recorded on superconducting gravimeters from earthquakes in central Japan—the Noto Hantou and Niigataken Chuetsu-oki events in 2007. J. Geodyn., 48(3-5), 260–268. https://doi.org/10.1016/j.jog.2009.09.013

Kim, J. W., Neumeyer, J., Kim, T. H., Woo, I., Park, H. J., Jeon, J. S., and Kim, K. D. (2009). Analysis of superconducting gravimeter measurements at MunGyung station, Korea. J. Geodyn., 47(4), 180–190. https://doi.org/10.1016/j.jog.2008.07.008

Llubes, M., Florsch, N., Hinderer, J., Longuevergne, L., and Amalvict, M. (2004). Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies. J. Geodyn., 38(3-5), 355–374. https://doi.org/10.1016/j.jog.2004.07.015

Matsuo, K., and Heki, K. (2011). Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry. Geophys. Res. Lett., 38(7), L00G12. https://doi.org/10.1029/2011GL049018

Mikolaj, M., Meurers, B., and Güntner, A. (2016). Modelling of global mass effects in hydrology, atmosphere and oceans on surface gravity. Comput. Geosci., 93, 12–20. https://doi.org/10.1016/j.cageo.2016.04.014

Nawa, K., Suda, N., Yamada, I., Miyajima, R., and Okubo, S. (2009). Coseismic change and precipitation effect in temporal gravity variation at Inuyama, Japan: a case of the 2004 off the Kii peninsula earthquakes observed with a superconducting gravimeter. J. Geodyn., 48(1), 1–5. https://doi.org/10.1016/j.jog.2009.01.006

Prasad, K. N. D., Srinivas, N., Meshram, A. E., Singh, A. P., and Tiwari, V. M. (2017). Co-seismic gravity changes in the Koyna-Warna region: implications of mass redistribution. J. Geol. Soc. India, 90(6), 704–710. https://doi.org/10.1007/s12594-017-0779-4

Ren, H. W., and Zhang, L. (2017). Impact of the Mw8.1 Nepal earthquake on well water level in mainland China and its implications on earthquake prediction. J. Geod. Geodyn. (in Chinese) , 37(10), 1087–1091. https://doi.org/10.14075/j.jgg.2017.10.021

Richter, C. F. (1958). Elementary Seismology. San Francisco: W. H. Freeman.222

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J.,.. Toll, D. (2004). The global land data assimilation system. Bull. Am. Meteor. Soc., 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381

Su, X. N., Wang, Z., Meng, G. J., Xu, W. Z., and Ren, J. W. (2015). Pre-seismic strain accumulation and co-seismic deformation of the 2015 Nepal Ms8.1 earthquake observed by GPS. Chin. Sci. Bull., 60(22), 2115–2123. https://doi.org/10.1360/N972015-00534

Sun, H. P., Zhang, H. K., Xu, J. Q., Chen, X. D., Zhou, J. C., and Zhang, M. M. (2019). Influences of the Tibetan plateau on tidal gravity detected by using SGs at Lhasa, Lijiang and Wuhan stations in China. Terr. Atmos. Ocean. Sci., 30(1), 139–149. https://doi.org/10.3319/tao.2019.02.14.01

Sun, W. K., and Okubo, S. (1993). Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation. J. Int., 114(3), 569–592. https://doi.org/10.1111/j.1365-246X.1993.tb06988.x

Sun, W. K., and Okubo, S. (1998). Surface potential and gravity changes due to internal dislocations in a spherical earth—Ⅱ. Application to a finite fault. Geophys. J. Int., 132(1), 79–88. https://doi.org/10.1046/j.1365-246x.1998.00400.x

Tanaka, Y., Okubo., S., Machida, M., Kimura, I., and Kosuge, T. (2001). First detection of absolute gravity change caused by earthquake. Geophys. Res. Lett., 28(15), 2979–2981. https://doi.org/10.1029/2000GL012590

U.S. Geological Survey (USGS). (2015). M 7.8—36 km E of Khudi, Nepal. (2015-04-12). https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/executive222

Van Camp, M., and Vauterin, P. (2005). Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci., 31(5), 631–640. https://doi.org/10.1016/j.cageo.2004.11.015

Van Camp, M., de Viron, O., and Avouac, J. P. (2016). Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements. Geophys. Res. Lett., 43(9), 4313–4320. https://doi.org/10.1002/2016GL068648

Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C. (2017). Geophysics from terrestrial time-variable gravity measurements. Rev. Geophys., 55(4), 938–992. https://doi.org/10.1002/2017RG000566

Zhang, B., Liu Y. W., Gao, X. Q., Yang, X. H., Ren, H. W., and Li, Q. W. (2015). Correlation analysis on co-seismic response between well water level and temperature caused by the Nepal Ms 8.1 earthquake. Acta Seismol. Sin. (in Chinese) , 37(4), 533–540. https://doi.org/10.11939/jass.2015.04.001

Zhang, K., Liu, Z. W., Zhang, X. T., and Jiang, Y. (2018). Comparison of noise-levels between superconducting gravimeter and gPhone gravimeter. Geod. Geodyn., 9(6), 498–503. https://doi.org/10.1016/j.geog.2018.09.002

Zhang, W. M., Wang, Y., and Zhang, C. J. (2001). The preliminary analysis of the effects of the soil moisture on gravity observations. Acta Geod. Cartograph. Sin. (in Chinese) , 30(2), 108–111. https://doi.org/10.3321/j.issn:1001-1595.2001.02.003

Zhang, X. L., Okubo, S., Tanaka, Y., and Li, H. (2016). Coseismic gravity and displacement changes of Japan Tohoku earthquake (MW 9.0). Geod Geodyn., 7(2), 95–100. https://doi.org/10.1016/j.geog.2015.10.002

[1]

YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043

[2]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[3]

Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010

[4]

XiaoYan Bai, KaiMing Huang, ShaoDong Zhang, ChunMing Huang, and Yun Gong, 2021: Anomalous changes of temperature and ozone QBOs in 2015-2017 from radiosonde observation and MERRA-2 reanalysis, Earth and Planetary Physics. doi: 10.26464/epp2021028

[5]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047

[6]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[7]

GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002

[8]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[9]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[10]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[11]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

[12]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[13]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[14]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[15]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[16]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[17]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[18]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[19]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[20]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in Chinese mainland

LeLin Xing, ZiWei Liu, JianGang Jia, ShuQing Wu, ZhengSong Chen, XiaoWei Niu