Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Huang, F. Q., Lei, J. H., Xiong, C., Zhong, J. H., and Li, G. Z. (2021). Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016. Earth Planet. Phys., 5(5), 416–426. http://doi.org/10.26464/epp2021043

2021, 5(5): 416-426. doi: 10.26464/epp2021043

SPACE PHYSICS: IONOSPHERIC PHYSICS

Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China

3. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

4. 

Electronic Information School, Wuhan University, Wuhan 430072, China

5. 

Planetary Environmental and Astrobiological Research Laboratory, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China

6. 

Chinese Academy of Sciences Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

7. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: JiuHou Lei, leijh@ustc.edu.cn

Received Date: 2021-06-16
Web Publishing Date: 2021-08-16

We investigated the variations of equatorial plasma bubbles (EPBs) in the East-Asian sector during a strong geomagnetic storm in October 2016, based on observations from the Beidou geostationary (GEO) satellites, Swarm satellite and ground-based ionosonde. Significant nighttime depletions of F region in situ electron density from Swarm and obvious nighttime EPBs in the Beidou GEO observations were observed on 13 October 2016 during the main phase. Moreover, one interesting feature is that the rare and unique sunrise EPBs were triggered on 14 October 2016 in the main phase rather than during the recovery phase as reported by previous studies. In addition, the nighttime EPBs were suppressed during the whole recovery phase, and absent from 14 to 19 October 2016. Meanwhile, the minimum virtual height of F trace (h’F) at Sanya (18.3°N, 109.6°E, MLAT 11.1°N) displayed obvious changes during these intervals. The h’F was enhanced in the main phase and declined during the recovery phase, compared with the values at pre- and post-storm. These results indicate that the enhanced nighttime EPBs and sunrise EPBs during the main phase and the absence nighttime EPBs for many days during the recovery phase could be associated with storm-time electric field changes.

Key words: EPBs; ionospheric irregularities; Beidou GEO TEC; geomagnetic storm; electron density; electric field

Abdu, M. A. (1997). Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J. Atmos. Sol.-Terr. Phys., 59(13), 1505–1519. https://doi.org/10.1016/S1364-6826(96)00152-6

Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Sol.–Terr. Phys., 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7

Anderson, D. N. (1976). Modeling the midlatitude F-region ionospheric storm using east-west drift and a meridional wind. Planet. Space Sci., 24(1), 69–77. https://doi.org/10.1016/0032-0633(76)90063-5

Blanc, M., and Richmond, A. D. (1980). The ionospheric disturbance dynamo. J. Geophys. Res.: Space Phys., 85(A4), 1669–1686. https://doi.org/10.1029/JA085iA04p01669

Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. Terr. Magn. Atmos. Electr., 43(3), 249–256. https://doi.org/10.1029/TE043i003p00249

Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and Su, S. Y. (2004). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res.: Space Phys., 109(A12), A12301. https://doi.org/10.1029/2004JA010583

Carter, B. A., Yizengaw, E., Pradipta, R., Retterer, J. M., Groves, K., Valladares, C., Caton, R., Bridgwood, C., Norman, R., and Zhang, K. (2016). Global equatorial plasma bubble occurrence during the 2015 St. Patrick's Day storm. J. Geophys. Res.: Space Phys., 121(1), 894–905. https://doi.org/10.1002/2015JA022194

Cherniak, I., and Zakharenkova, I. (2016). First observations of super plasma bubbles in Europe. Geophys. Res. Lett., 43(21), 11137–11145. https://doi.org/10.1002/2016GL071421

Fejer, B. G., and Scherliess, L. (1997). Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res.: Space Phys., 102(A11), 24047–24056. https://doi.org/10.1029/97JA02164

Fejer, B. G., Emmert, J. T., and Sipler, D. P. (2002). Climatology and storm time dependence of nighttime thermospheric neutral winds over Millstone Hill. J. Geophys. Res.: Space Phsy., 107(A5), SIA 3-1–SIA 3-9. https://doi.org/10.1029/2001JA000300

Fejer, B. G., Jensen, J. W., and Su, S. Y. (2008). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett., 35(20), L20106. https://doi.org/10.1029/2008GL035584

Fukao, S., Ozawa, Y., Yamamoto, M., and Tsunoda, R. T. (2003). Altitude-extended equatorial spread F observed near sunrise terminator over Indonesia. Geophys. Res. Lett., 30(22), 2137. https://doi.org/10.1029/2003GL018383

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M. (1994). What is a geomagnetic storm?. J. Geophys. Res.: Space Phys., 99(A4), 5771–5792. https://doi.org/10.1029/93JA02867

Haerendel, G., Eccles, J. V., and Çakir, S. (1992). Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J. Geophys. Res.: Space Phys., 97(A2), 1209–1223. https://doi.org/10.1029/91JA02226

Huang, C. S., and Kelley, M. C. (1996). Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh–Taylor instability. J. Geophys. Res.: Space Phys., 101(A1), 293–302. https://doi.org/10.1029/95JA02210

Huang, C. S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., and Hairston, M. R. (2013). Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res.: Space Phys., 118(5), 2398–2408. https://doi.org/10.1002/jgra.50252

Huang, F. Q., Lei, J. H., and Dou, X. K. (2017). Daytime ionospheric longitudinal gradients seen in the observations from a regional BeiDou GEO receiver network. J. Geophys. Res.: Space Phys., 122(6), 6552–6561. https://doi.org/10.1002/2017JA023881

Huang, F. Q., Lei, J. H., Dou, X. K., Luan, X. L., and Zhong, J. H. (2018). Nighttime medium-scale traveling ionospheric disturbances from airglow imager and Global Navigation Satellite Systems observations. Geophys. Res. Lett., 45(1), 31–38. https://doi.org/10.1002/2017GL076408

Huang, F. Q., Otsuka, Y., Lei, J. H., Luan, X. L., Dou, X. K., and Li, G. Z. (2019). Daytime periodic wave-like structures in the ionosphere observed at low latitudes over the Asian-Australian sector using total electron content from Beidou geostationary satellites. J. Geophys. Res.: Space Phys., 124(3), 2312–2322. https://doi.org/10.1029/2018JA026443

Huang, F. Q., Lei, J. H., Otsuka, Y., Luan, X. L., Liu, Y., Zhong, J. H., and Dou, X. K. (2021). Characteristics of medium-scale traveling ionospheric disturbances and ionospheric irregularities at mid-latitudes revealed by the total electron content associated with the beidou geostationary satellite. IEEE Trans. Geosci. Remote Sens., 59(8), 6424–6430. https://doi.org/10.1109/TGRS.2020.3032741

Huba, J. D., Joyce, G., and Krall, J. (2008). Three-dimensional equatorial spread F modeling. Geophys. Res. Lett., 35(10), L10102. https://doi.org/10.1029/2008GL033509

Hysell, D. L. (2000). An overview and synthesis of plasma irregularities in equatorial spread F. J. Atmos. Sol.-Terr. Phys., 62(12), 1037–1056. https://doi.org/10.1016/S1364-6826(00)00095-X

Jiang, C. H., Yang, G. B., Liu, J., Yokoyama, T., Komolmis, T., Song, H., Lan, T., Zhou, C., Zhang, Y. N., and Zhao, Z. Y. (2016). Ionosonde observations of daytime spread F at low latitudes. J. Geophys. Res.: Space Phys., 121(12), 12093–12103. https://doi.org/10.1002/2016JA023123

Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics (2nd ed). San Diego, CA: Academic Press.222

Krall, J., Huba, J. D., and Fritts, D. C. (2013). On the seeding of equatorial spread F by gravity waves. Geophys. Res. Lett., 40(4), 661–664. https://doi.org/10.1002/grl.50144

Lei, J. H., Wang, W. B., Burns, A. G., Solomon, S. C., Richmond, A. D., Wiltberger, M., Goncharenko, L. P., Coster, A., and Reinisch, B. W. (2008). Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J. Geophys. Res.: Space Phys., 113(A1), A01314. https://doi.org/10.1029/2007JA012807

Lei, J. H., Huang, F. Q., Chen, X. T., Zhong, J. H., Ren, D. X., Wang, W. B., et al. (2018). Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017?. J. Geophys. Res.: Space Phys., 123, 3217–3232. https://doi.org/10.1029/2017JA025166

Li, G. Z., Ning, B. Q., Hu, L. H., Liu, L. B., Yue, X. N., Wan, W. X., Zhao, B. Q., Igarashi, K., Kubota, M., … Liu, J. Y. (2010). Longitudinal development of low‐latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res.: Space Phys., 115(A4), A04304. https://doi.org/10.1029/2009JA014830

Li, G. Z., Otsuka, Y., Ning, B. Q., Abdu, M. A., Yamamoto, M., Wan, W. X., Liu, L. B., and Abadi, P. (2016). Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophys. Res. Lett., 43(6), 2389–2395. https://doi.org/10.1002/2016GL068145

Li, G. Z., Ning, B. Q., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., and Chen, J. S. (2018). Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7−8 September 2017. J. Geophys. Res.: Space Phys., 123(9), 7985–7998. https://doi.org/10.1029/2018JA025871

Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C., and Su, S. Y. (2005). Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res.: Space Phys., 110(A12), A12312. https://doi.org/10.1029/2005JA011304

Luo, W. H., Xiong, C., Xu, J. S., Zhu, Z., and Chang, S. S. (2020). The low-latitude plasma irregularities after sunrise from multiple observations in both hemispheres during the recovery phase of a storm. Remote Sens., 12(18), 2897. https://doi.org/10.3390/rs12182897

Ma, G. Y., and Maruyama, T. (2006). A super bubble detected by dense GPS network at east Asian longitudes. Geophys. Res. Lett., 33(21), L21103. https://doi.org/10.1029/2006GL027512

Makela, J. J., and Otsuka, Y. (2012). Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1), 419–440. https://doi.org/10.1007/s11214-011-9816-6

Nayak C., Tsai, L. C., Su, S. Y., Galkin, I. A., Caton, R. G., and Groves, K. M. (2017). Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study. Adv. Space Res., 60(2), 396–405. https://doi.org/10.1016/j.asr.2016.11.036

Nishioka, M., Saito, A., and Tsugawa, T. (2008). Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J. Geophys. Res.: Space Phys., 113(A5), A05301. https://doi.org/10.1029/2007JA012605

Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett., 29(15), 43-1–43-4. https://doi.org/10.1029/2002GL015347

Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett., 24(18), 2283–2286. https://doi.org/10.1029/97GL02273

Richmond, A. D., and Lu, G. (2000). Upper-atmospheric effects of magnetic storms: A brief tutorial. J. Atmos. Sol.‐Terr. Phys., 62(12), 1115–1127. https://doi.org/10.1016/S1364-6826(00)00094-8

Sripathi, S., Abdu, M. A., Patra, A. K., and Ghodpage, R. N. (2018). Unusual generation of localized EPB in the dawn sector triggered by a moderate geomagnetic storm. J. Geophys. Res.: Space Phys., 123(11), 9697–9710. https://doi.org/10.1029/2018JA025642

Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., and Ravindran, S. (2008). Local time dependent response of postsunset ESF during geomagnetic storms. J. Geophys. Res.: Space Phys., 113(A7), A07310. https://doi.org/10.1029/2007JA012922

Tulasi Ram, S., Ajith, K. K., Yamamoto, M., Otsuka, Y., Yokoyama, T., Niranjan, K., and Gurubaran, S. (2015). Fresh and evolutionary-type field-aligned irregularities generated near sunrise terminator due to overshielding electric fields. J. Geophys. Res.: Space Phys., 120(7), 5922–5930. https://doi.org/10.1002/2015JA021427

Wan, X., Xiong, C., Wang, H., Zhang, K. D., Zheng, Z. C., He, Y., and Yu, L. (2019). A statistical study on the climatology of the Equatorial Plasma Depletions occurrence at topside ionosphere during geomagnetic disturbed periods. J. Geophys. Res.: Space Phys., 124(10), 8023–8038. https://doi.org/10.1029/2019JA026926

Wu, K., Xu, J. Y., Yue, X. N., Xiong, C., Wang, W. B., Yuan, W., Wang, C., Zhu, Y., and Luo, J. (2020). Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Ann. Geophys., 38(1), 163–177. https://doi.org/10.5194/angeo-38-163-2020

Xiong, C., Lühr, H., and Fejer, B. G. (2015). Global features of the disturbance winds during storm time deduced from CHAMP observations. J. Geophys. Res.: Space Phys., 120(6), 5137–5150. https://doi.org/10.1002/2015JA021302

Xiong, C., Stolle, C., and Lühr, H. (2016). The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Wea., 14(8), 563–577. https://doi.org/10.1002/2016SW001439

Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res.: Space Phys., 119(12), 10474–10482. https://doi.org/10.1002/2014JA020708

Zalesak, S. T., and Ossakow, S. L. (1980). Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations. J. Geophys. Res.: Space Phys., 85(A5), 2131–2142. https://doi.org/10.1029/JA085iA05p02131

[1]

Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060

[2]

Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042

[3]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[4]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[5]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[6]

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023

[7]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[8]

XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051

[9]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[10]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics. doi: 10.26464/epp2021051

[11]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[12]

JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045

[13]

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

[14]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[15]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[16]

Kai Fan, XinLiang Gao, QuanMing Lu, and Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics. doi: 10.26464/epp2021052

[17]

Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040

[18]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[19]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[20]

ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li