Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

2019, 3(4): 365-372. doi: 10.26464/epp2019037

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Ring current proton scattering by low-frequency magnetosonic waves

1. 

Space Science Institute, Macau University of Science and Technology, Macau, China

2. 

School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

3. 

Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing 100012, China

Corresponding author: Jing Wang, wangjingjlu@hotmail.com

Received Date: 2019-04-18
Web Publishing Date: 2019-07-01

Magnetosonic (MS) waves are believed to have the ability to affect the dynamics of ring current protons both inside and outside the plasmasphere. However, previous studies have focused primarily on the effect of high-frequency MS waves (f > 20 Hz) on ring current protons. In this study, we investigate interactions between ring current protons and low-frequency MS waves (< 20 Hz) inside the plasmasphere. We find that low-frequency MS waves can effectively accelerate < 20 keV ring current protons on time scales from several hours to a day, and their scattering efficiency is comparable to that due to high-frequency MS waves (>20 Hz), from which we infer that omitting the effect of low-frequency MS waves will considerably underestimate proton depletion at middle pitch angles and proton enhancement at large pitch angles. Therefore, ring current proton modeling should take into account the effects of both low- and high-frequency MS waves.

Key words: magnetosonic waves, ring current protons, wave-particle interactions, proton distribution evolutions

Bortnik, J., and Thorne, R. M. (2010). Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. J. Geophys. Res. Space Phys., 115(A7), A07213. https://doi.org/10.1029/2010JA015283

Cao, J. B., Mazelle, C., Belmont, G., and Rème, H. (1995). Nongyrotropy of heavy newborn ions at comet Grigg-Skjellerup and corresponding instability. J. Geophys. Res. Space Phys., 100(A12), 23379–23388. https://doi.org/10.1029/95JA01915

Cao, J. B., Zhou, G. C., and Wang, X. Y. (1998a). Generalized ion ring instability driven by ions with a partial shell distribution. Geophys. Res. Lett., 25(9), 1499–1501. https://doi.org/10.1029/98GL01006

Cao, J. B., Mazelle, C., Belmont, G., and Rème, H. (1998b). Oblique ring instability driven by nongyrotropic ions: application to observations at comet Grigg-Skjellerup. J. Geophys. Res. Space Phys., 103(A2), 2055–2067. https://doi.org/10.1029/97JA02370

Cao, X., Ni, B. B., Liang, J., Xiang, Z., Wang, Q., Shi, R., Gu, X. D., Zhou, C., Zhao, Z. Y., .. Liu, J. (2016). Resonant scattering of central plasma sheet protons by multiband emic waves and resultant proton loss timescales. J. Geophys. Res. Space Phys., 121(2), 1219–1232. https://doi.org/10.1002/2015JA021933

Chen, L. J., Thorne, R. M., Jordanova, V. K., and Horne, R. B. (2010). Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res. Space Phys., 115(A11), A11222. https://doi.org/10.1029/2010JA015707

Chen, L. J., Thorne, R. M., Jordanova, V. K., Thomsen, M. F., and Horne, R. B. (2011). Magnetosonic wave instability analysis for proton ring distributions observed by the LANL magnetospheric plasma analyzer. J. Geophys. Res. Space Phys., 116(A3), A03223. https://doi.org/10.1029/2010JA016068

Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S. (1999). The terrestrial ring current: origin, formation, and decay. Rev. Geophys., 37(4), 407–438. https://doi.org/10.1029/1999RG900009

Ebihara, Y., and Miyoshi, Y. (2011). Dynamic inner magnetosphere: a tutorial and recent advances, In W. Liu (Ed.), The Dynamic Magnetosphere (Vol. 3, pp. 145-187). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0501-2_9222

Fu, H. S., Cao, J. B., Zhima, Z., Khotyaintsev, Y. V., Angelopoulos, V., Santolík, O., Omura, Y., Taubenschuss, U., Chen, L., and Huang, S. Y. (2014). First observation of rising-tone magnetosonic waves. Geophys. Res. Lett., 41(21), 7419–7426. https://doi.org/10.1002/2014GL061867

Fu, S., Ni, B. B., Li, J. X., Zhou, C., Gu, X. D., Huang, S. Y., Zhang, H., Ge, Y. S., and Cao X. (2016). Interactions between magnetosonic waves and ring current protons: gyroaveraged test particle simulations. J. Geophys. Res. Space Phys., 121(9), 8537–8553. https://doi.org/10.1002/2016JA023117

Glauert, S. A., and Horne, R. B. (2005). Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res. Space Phys., 110(A4), A04206. https://doi.org/10.1029/2004JA010851

Horne, R. B., Wheeler, G. V., and Alleyne, H. S. C. K. (2000). Proton and electron heating by radially propagating fast magnetosonic waves. J. Geophys. Res. Space Phys., 105(A12), 27597–27610. https://doi.org/10.1029/2000JA000018

Horne, R. B., Thorne, R. M., Glauert, S. A., Meredith, N. P., Pokhotelov, D., and Santolík, O. (2007). Electron acceleration in the van Allen radiation belts by fast magnetosonic waves. Geophys. Res. Lett., 34(17), L17107. https://doi.org/10.1029/2007GL030267

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., and Wygant, J. R. (2015). Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen Probes. J. Geophys. Res. Space Phys., 120(2), 904–914. https://doi.org/10.1002/2014JA020857

Li, J. X., Ni, B. B., Xie, L., Pu, Z. Y., Bortnik, J., Thorne, R. M., Chen, L. J., Ma, Q. L., Fu, S. Y., … Guo, R. L. (2014). Interactions between magnetosonic waves and radiation belt electrons: comparisons of quasi-linear calculations with test particle simulations. Geophys. Res. Lett., 41(14), 4828–4834. https://doi.org/10.1002/2014GL060461

Li, L. Y., Yu, J., Cao, J. B., and Yuan, Z. G. (2016). Compression-amplified emic waves and their effects on relativistic electrons. Phys. Plasmas, 23(6), 062116. https://doi.org/10.1063/1.4953899

Li, L. Y., Yu, J., Cao, J. B., Yang, J. Y., Li, X., Baker, D. N., Reeves, G. D., and Spence, H. (2017a). Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region. J. Geophys. Res. Space Phys., 122(5), 5431–5448. https://doi.org/10.1002/2016JA023634

Li, L. Y., Liu, B., Yu, J., and Cao, J. B. (2017b). The rapid responses of magnetosonic waves to the compression and expansion of Earth’s magnetosphere. Geophys. Res. Lett., 44(22), 11239–11247. https://doi.org/10.1002/2017GL075649

Liu, B., Li, L. Y., Yu, J., and Cao, J. B. (2018). The effect of hot protons on magnetosonic waves inside and outside the plasmapause: new observations and theoretic results. J. Geophys. Res. Space Phys., 123(1), 653–664. https://doi.org/10.1002/2017JA024676

Liu, K. J., Gary, S. P., and Winske, D. (2011). Excitation of magnetosonic waves in the terrestrial magnetosphere: particle-in-cell simulations. J. Geophys. Res. Space Phys., 116(A7), A07212. https://doi.org/10.1029/2010JA016372

Liu, X., Chen, L. J., Yang, L. X., Xia, Z. Y., and Malaspina, D. M. (2018). One-dimensional full wave simulation of equatorial magnetosonic wave propagation in an inhomogeneous magnetosphere. J. Geophys. Res. Space Phys., 123(1), 587–599. https://doi.org/10.1002/2017JA024336

Lyons, L. R. (1974). Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves. J. Plasma Phys., 12(3), 417–432. https://doi.org/10.1017/S002237780002537X

Meredith, N. P., Horne, R. B., and Anderson, R. R. (2008). Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere. J. Geophys. Res. Space Phys., 113(A6), A06213. https://doi.org/10.1029/2007JA012975

Ni, B. B., Cao, X., Zou, Z. Y., Zhou, C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., … Xie, L. (2015). Resonant scattering of outer zone relativistic electrons by multiband emic waves and resultant electron loss time scales. J. Geophys. Res. Space Phys., 120(9), 7357–7373. https://doi.org/10.1002/2015JA021466

Ni, B. B., Hua, M., Zhou, R. X., Yi, J., and Fu, S. (2017). Competition between outer zone electron scattering by plasmaspheric hiss and magnetosonic waves. Geophys. Res. Lett., 44(8), 3465–3474. https://doi.org/10.1002/2017GL072989

Ni, B. B., Zou, Z. Y., Fu, S., Cao, X., Gu, X. D., and Xiang, Z. (2018). Resonant scattering of radiation belt electrons by off-equatorial magnetosonic waves. Geophys. Res. Lett., 45(3), 1228–1236. https://doi.org/10.1002/2017GL075788

Perraut, S., Roux, A., Robert, P., Gendrin, R., Sauvaud, J. A., Bosqued, J. M., Kremser, G., and Korth, A. (1982). A systematic study of ULF waves above F H+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions. J. Geophys. Res. Space Phys., 87(A8), 6219–6236. https://doi.org/10.1029/JA087iA08p06219

Posch, J. L., Engebretson, M. J., Olson, C. N., Thaller, S. A., Breneman, A. W., Wygant, J. R., Boardsen, S. A., Kletzing, C. A., Smith, C. W., and Reeves, G. D. (2015). Low-harmonic magnetosonic waves observed by the Van Allen Probes. J. Geophys. Res. Space Phys., 120(8), 6230–6257. https://doi.org/10.1002/2015JA021179

Russell, C. T., Holzer, R. E., and Smith, E. J. (1970). OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial noise. J. Geophys. Res., 75(4), 755–768. https://doi.org/10.1029/JA075i004p00755

Santolík, O., Pickett, J. S., Gurnett, D. A., Maksimovic, M., and Cornilleau-Wehrlin, N. (2002). Spatiotemporal variability and propagation of equatorial noise observed by Cluster. J. Geophys. Res. Space Phys., 107(A12), 1495. https://doi.org/10.1029/2001JA009159

Santolík, O., Parrot, M., and Lefeuvre, F. (2003). Singular value decomposition methods for wave propagation analysis. Radio Sci., 38(1), 1010. https://doi.org/10.1029/2000RS002523

Shprits, Y. Y. (2009). Potential waves for pitch-angle scattering of near-equatorially mirroring energetic electrons due to the violation of the second adiabatic invariant. Geophys. Res. Lett., 36(12), L12106. https://doi.org/10.1029/2009GL038322

Stix, T. H. (1962). The Theory of Plasma Waves. New York: McGraw-Hill.222

Su, Z. P., Wang, G., Liu, N. G., Zheng, H. N., Wang, Y. M., and Wang, S. (2017). Direct observation of generation and propagation of magnetosonic waves following substorm injection. Geophys. Res. Lett., 44(15), 7587–7597. https://doi.org/10.1002/2017GL074362

Tao, X., and Li, X. (2016). Theoretical bounce resonance diffusion coefficient for waves generated near the equatorial plane. Geophys. Res. Lett., 43(14), 7389–7397. https://doi.org/10.1002/2016GL070139

Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024

Wang, Z.Q., Zhai, H., Gao, Z. X., and Huang, C. Y. (2017a). Gyrophase bunched ions in the plasma sheet. Adv. Space Res., 59(1), 274–282. https://doi.org/10.1016/j.asr.2016.08.003

Wang, Z. Q., Pan, Z. R., Zhai, H., Gao, Z. X., Sun, K., & Zhang, Y. S. (2017b). The nonlinear interactions between O+ ions and oxygen band EMIC waves. J. Geophys. Res. Space Phys., 122(7), 7097–7109. https://doi.org/10.1002/2017JA024113

Wang, Z. Q., Zhai, H., and Gao, Z. X. (2017c). The effects of hydrogen band EMIC waves on ring current H+ ions. Geophys. Res. Lett., 44(23), 11722–11728. https://doi.org/10.1002/2017GL075843

Xiao, F. L., Zhou, Q. H., He, Z. G., Yang, C., He, Y. H., and Tang, L. J. (2013). Magnetosonic wave instability by proton ring distributions: simultaneous data and modeling. J. Geophys. Res. Space Phys., 118(7), 4053–4058. https://doi.org/10.1002/jgra.50401

Xiao, F. L., Zong, Q. G., Wang, Y. F., He, Z. G., Su, Z. P., Yang, C., and Zhou, Q. H. (2014). Generation of proton aurora by magnetosonic waves. Sci. Rep., 4, 5190. https://doi.org/10.1038/srep05190

Xiao, F. L., Yang, C., Su, Z. P., Zhou, Q. H., He, Z. G., He, Y. H., Baker, D. N., Spence, H. E., Funsten, H. O., and Blake, J. B. (2015). Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat. Commun., 6, 8590. https://doi.org/10.1038/ncomms9590

Yu, J., Li, L. Y., Cao, J. B., Yuan, Z. G., Reeves, G. D., Baker, D. N., Blake, J. B., and Spence, H. (2015). Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement. J. Geophys. Res. Space Phys., 120(12), 10275–10288. https://doi.org/10.1002/2015JA021460

Yu, J., Li, L. Y., Cao, J. B., Chen, L., Wang, J., and Yang, J. (2017). Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. J. Geophys. Res. Space Phys., 122(4), 4156–4167. https://doi.org/10.1002/2016JA023372

Yu, J., Li, L. Y., Cui, J., Cao J. B., and Wang, J. (2019). Effect of low-harmonic magnetosonic waves on the radiation belt electrons inside the Plasmasphere. J. Geophys. Res. Space Phys.. https://doi.org/10.1029/2018JA026328

Yuan, Z. G., Deng, X. H., Lin, X., Pang, Y., Zhou, M., Décréau, P. M. E., Trotignon, J. G., Lucek, E., Frey, H. U., and Wang, J. F. (2010). Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites. Geophys. Res. Lett., 37(7), L07108. https://doi.org/10.1029/2010GL042711

Yuan, Z. G., Yu, X. D., Huang, S. Y., Wang, D. D., and Funsten, H. O. (2017). In situ observations of magnetosonic waves modulated by background plasma density. Geophys. Res. Lett., 44(15), 7628–7633. https://doi.org/10.1002/2017GL074681

Zhima, Z., Chen, L. J., Fu, H. S., Cao, J. B., Horne, R. B., and Reeves, G. (2015). Observations of discrete magnetosonic waves off the magnetic equator. Geophys. Res. Lett., 42(22), 9694–9701. https://doi.org/10.1002/2015GL066255

[1]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[2]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[3]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[4]

XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005

[5]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[6]

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

[7]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[8]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[9]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[10]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[11]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[12]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[13]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[14]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Ring current proton scattering by low-frequency magnetosonic waves

Jiang Yu, Jing Wang, Jun Cui