Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, Y. S., Sun, J. M., Zhang, Z. L., Su, B., Tian, S. C., Cao, M. M. (2020). Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin. Earth Planet. Phys., 4(3), 308–316doi: 10.26464/epp2020030

2020, 4(3): 308-316. doi: 10.26464/epp2020030

SOLID EARTH: PALEOMAGNETISM

Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin

1. 

Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China

3. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: JiMin Sun, jmsun@mail.iggcas.ac.cn

Received Date: 2019-12-17
Web Publishing Date: 2020-05-01

Thick sediments from foreland basins usually provide valuable information for understanding the relationships between mountain building, rock denudation, and sediment deposition. In this paper, we report environmental magnetic measurements performed on the Miocene sediments in the Subei Basin, northeastern Tibetan Plateau. Our results show two different patterns. First, the bulk susceptibility and SIRM, ARM, and HIRM mainly reflect the absolute-concentration of magnetic minerals; all have increased remarkably since 13.7 Ma, related to provenance change rather than climate change. Second, the ratios of IRM100mT/SIRM, IRM100mT/IRM30mT, and IRM100mT/IRM60mT, together with the redness and S ratio, reflect the relative-concentration of hematite, being climate-dependent. Their vertical changes correlate in general with the long-term Miocene climatic records of marine oxygen isotope variations, marked by the existence of higher ratios between 17 and 14 Ma. This may imply that global climate change, rather than uplift of the Tibetan Plateau, played a dominant role in the long-term climatic evolution of the Subei area from the early to middle Miocene.

Key words: Environmental magnetism; MMCO; global cooling; the Subei Basin

Abdul Aziz, H., Krijgsman, W., Hilge°Cn, F. J., Wilson, D. S., and Calvo, J. P. (2003). An astronomical polarity timescale for the late middle Miocene based on cyclic continental sequences. J. Geophy. Res.: Solid Earth, 108(B3), 2159. https://doi.org/10.1029/2002JB001818

Abreu, V. S., and Haddad, G. A. (1998). Glacioeustatic fluctuations: the mechanism linking stable isotope events and sequence stratigraphy from the Early Oligocene to Middle Miocene. In P. C. de Graciansky, et al. (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. London: SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.98.02.0245222

An, Z. S., Kutzbach, J. E., Prell, W. L., and Porter, S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833), 62–66. https://doi.org/10.1038/35075035

Ao, H., Deng, C. L., Dekkers, M. J., and Liu, Q. S. (2010). Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett., 292(1-2), 191–200. https://doi.org/10.1016/j.jpgl.2010.01.035

Aziz, H. A., van Dam, J., Hilgen, F. J., and Krijgsman, W. (2004). Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale. Earth Planet. Sci. Lett., 222(1), 243–258. https://doi.org/10.1016/j.jpgl.2004.02.018

Balsam, W. L., Deaton, B. C., and Damuth, J. E. (1999). Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Mar. Geol., 161(2-4), 141–153. https://doi.org/10.1016/S0025-3227(99)00037-7

Bovet, P. M., Ritts, B. D., Gehrels, G., Abbink, A. O., Darby, B., and Hourigan, J. (2009). Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. Am. J. Sci., 309(4), 290–329. https://doi.org/10.2475/00.4009.02

Collinson, D. W. (1983). Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instruments. London: Chapman & Hall.222

Deng, C. L., Vidic, N. J., Verosub, K. L., Singer, M. J., Liu, Q. S., Shaw, J., and Zhu, R. X. (2005). Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J. Geophys. Res.: Solid Earth, 110(B3), B03103. https://doi.org/10.1029/2004JB003451

Deng, C. L., Shaw, J., Liu, Q. S., Pan, Y. X., and Zhu, R. X. (2006). Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: implications for Quaternary development of Asian aridification and cooling. Earth Planet. Sci. Lett., 241(1-2), 248–259. https://doi.org/10.1016/j.jpgl.2005.10.020

Fang, X. M., Zan, J. B., Appel, E., Lu, Y., Song, C. H., Dai, S., and Tuo, S. B. (2015). An Eocene-Miocene continuous rock magnetic record from the sediments in the Xining Basin, NW China: indication for Cenozoic persistent drying driven by global cooling and Tibetan Plateau uplift. Geophys. J. Int., 201(1), 78–89. https://doi.org/10.1093/gji/ggv002

Flower, B. P., and Kennett, J. P. (1994). The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr., Palaeoclimatol., Palaeoecol., 108(3-4), 537–555. https://doi.org/10.1016/0031-0182(94)90251-8

Flower, B. P. (1999). Palaeoclimatology: Warming without high CO2?. Nature, 399(6734), 313–314. https://doi.org/10.1038/20568

Fu, C. F., Qiang, X. K., Xu, X. W., Xi, J. J., Zuo, J., and An, Z. S. (2018). Late Miocene magnetostratigraphy of Jianzha Basin in the northeastern margin of the Tibetan Plateau and changes in the East Asian summer monsoon. Geol. J., 53(S1), 282–292. https://doi.org/10.1002/gj.3047

Gilder, S., Chen, Y., and Sen, S. (2001). Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia. J. Geophys. Res. Solid Earth, 106(B12), 30505–30521. https://doi.org/10.1029/2001JB000325

Guan, C., Chang, H., Yan, M. D., Li, L. Y., Xia, M. M., Zan, J. B., and Liu, S. C. (2019). Rock magnetic constraints for the Mid-Miocene Climatic Optimum from a high-resolution sedimentary sequence of the northwestern Qaidam Basin, NE Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 532, 109263. https://doi.org/10.1016/j.palaeo.2019.109263

Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., Peng, S. Z., Wei, J. J., Yuan, B. Y., and Liu, T. S. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877), 159–163. https://doi.org/10.1038/416159a

Hao, Q. Z., Oldfield, F., Bloemendal, J., and Guo, Z. T. (2008). The magnetic properties of loess and paleosol samples from the Chinese Loess Plateau spanning the last 22 million years. Palaeogeogr., Palaeoclimatol., Palaeoecol., 260(3-4), 389–404. https://doi.org/10.1016/j.palaeo.2007.11.010

He, P. J., Song, C. H., Wang, Y. D., Meng, Q. Q., Chen, L. H., Yao, L. J., Huang, R. H., Feng, W., and Chen, S. (2018). Cenozoic deformation history of the Qilian Shan (northeastern Tibetan Plateau) constrained by detrital apatite fission-track thermochronology in the northeastern Qaidam Basin. Tectonophysics, 749, 1–11. https://doi.org/10.1016/j.tecto.2018.10.017

Heller, F., and Tungsheng, L. (1984). Magnetism of Chinese loess deposits. Geophysical Journal International, 77(1), 125–141. https://doi.org/10.1111/j.1365-246X.1984.tb01928.x

Helmke, J. P., Schulz, M., and Bauch, H. A. (2002). Sediment-color record from the Northeast Atlantic Reveals patterns of millennial-Scale Climate variability during the Past 500, 000 years. Quat. Res., 57(1), 49–57. https://doi.org/10.1006/qres.2001.2289

Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O., and Andersen, N. (2014). Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42(1), 19–22. https://doi.org/10.1130/G34890.1

Hui, Z. C., Zhang, J., Ma, Z. H., Li, X. M., Peng, T. J., Li, J. J., and Wang, B. (2018). Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data. Palaeogeogr., Palaeoclimatol., Palaeoecol., 512, 106–117. https://doi.org/10.1016/j.palaeo.2018.10.025

Jiang, H. C., Ji, J. L., Gao, L., Tang, Z. H., and Ding, Z. L. (2008). Cooling-driven climate change at 12–11 Ma: Multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China. Palaeogeogr., Palaeoclimatol., Palaeoecol., 265(1-2), 148–158. https://doi.org/10.1016/j.palaeo.2008.05.006

Larsson, L. M., Dybkjær, K., Rasmussen, E. S., Piasecki, S., Utescher, T., and Vajda, V. (2011). Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeogr., Palaeoclimatol., Palaeoecol., 309(3-4), 161–175. https://doi.org/10.1016/j.palaeo.2011.05.003

Li, J. F., Zhang, Z. C., Tang, W. H., Li, K., Luo, Z. W., and Li, J. (2014). Provenance of Oligocene–Miocene sediments in the Subei area, eastern Altyn Tagh fault and its geological implications: Evidence from detrital zircons LA-ICP-MS U–Pb chronology. J. Asian Earth Sci., 87, 130–140. https://doi.org/10.1016/j.jseaes.2014.02.015

Li, J. J., Fang, X. M., Van der Voo, R., Zhu, J. J., Mac Niocaill, C., Cao, J. X., Zhong, W., Chen, H. L., Wang, J. L., … Zhang, Y. C. (1997). Late Cenozoic magnetostratigraphy (11–0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geol. Mijnbouw, 76(1–2), 121–134. https://doi.org/10.1023/A:1003153717799

Lin, X., Zheng, D. W., Sun, J. M., Windley, B. F., Tian, Z. H., Gong, Z. J., and Jia, Y. Y. (2015). Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. J. Asian Earth Sci., 111, 302–311. https://doi.org/10.1016/j.jseaes.2015.07.007

Lin, X. B., Wyrwoll, K. H., Chen, H. L., and Cheng, X. G. (2016). On the timing and forcing mechanism of a mid-Miocene arid climate transition at the NE margins of the Tibetan Plateau: stratigraphic and sedimentologic evidence from the Sikouzi Section. Int. J. Earth Sci., 105(3), 1039–1049. https://doi.org/10.1007/s00531-015-1213-z

Liu, Q. S., Deng, C. L., Torrent, J., and Zhu, R. X. (2007). Review of recent developments in mineral magnetism of the Chinese loess. Quat. Sci. Rev., 26(3–4), 368–385. https://doi.org/10.1016/j.quascirev.2006.08.004

Liu, Q. S., Roberts, A. P., Larrasoana, J. C., Banerjee, S. K., Guyodo, Y., Tauxe, L., and Oldfield, F. (2012). Environmental magnetism: principles and applications. Rev. Geophys., 50(4), RG4002. https://doi.org/10.1029/2012RG000393

Miao, Y. F., Fang, X. M., Herrmann, M., Wu, F. L., Zhang, Y. Z., and Liu, D. L. (2011). Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr., Palaeoclimatol., Palaeoecol., 299(1-2), 30–38. https://doi.org/10.1016/j.palaeo.2010.10.026

Miao, Y. F., Herrmann, M., Wu, F. L., Yan, X. L., and Yang, S. L. (2012). What controlled Mid–Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev., 112(3–4), 155–172. https://doi.org/10.1016/j.earscirev.2012.02.003

Miller, K. G., Wright, J. D., and Fairbanks, R. G. (1991). Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res.: Solid Earth, 96(B4), 6829–6848. https://doi.org/10.1029/90JB02015

Molnar, P., England, P., and Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys., 31(4), 357–396. https://doi.org/10.1029/93RG02030

Nagao, S., and Nakashima, S. (1992). The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Mar. Geol., 109(1-2), 83–94. https://doi.org/10.1016/0025-3227(92)90222-4

Raymo, M. E., and Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117–122. https://doi.org/10.1038/359117a0

Ritts, B. D., Yue, Y. J., and Graham, S. A. (2004). Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh fault, northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay basins. J. Geol., 112(2), 207–229. https://doi.org/10.1086/381658

Rousse, S., Kissel, C., Laj, C., Eiríksson, J., and Knudsen, K. L. (2006). Holocene centennial to millennial-scale climatic variability: Evidence from high-resolution magnetic analyses of the last 10 cal kyr off North Iceland (core MD99-2275). Earth Planet. Sci. Lett., 242(3-4), 390–405. https://doi.org/10.1016/j.jpgl.2005.07.030

Sayem, A. S. M., Guo, Z. T., Wu, H. B., Zhang, C. X., Yang, F., Xiao, G. Q., and He, Z. L. (2018). Sedimentary and geochemical evidence of Eocene climate change in the Xining Basin, northeastern Tibetan Plateau. Sci. China Earth Sci., 61(9), 1292–1305. https://doi.org/10.1007/s11430-018-9231-9

Song, C. H., Hu, S. H., Han, W. X., Zhang, T., Fang, X. M., Gao, J. P., and Wu, F. L. (2014). Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 395, 67–76. https://doi.org/10.1016/j.palaeo.2013.12.022

Song, Y. G., Wang, Q. S., An, Z. S., Qiang, X. K., Dong, J. B., Chang, H., Zhang, M. S., and Guo, X. H. (2018). Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin, Northern China. Palaeogeogr., Palaeoclimatol., Palaeoecol., , 46–55. https://doi.org/10.1016/j.palaeo.2017.10.001

Sun, J. M., and Liu, T. S. (2000). Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth Planet. Sci. Lett., 180(3-4), 287–296. https://doi.org/10.1016/S0012-821X(00)00175-8

Sun, J. M., Liu, T. S., and An, Z. S. (2005). Tectonic uplift in the northern Tibetan Plateau since 13.7 Ma ago inferred from molasse deposits along the Altyn Tagh Fault. Earth Planet. Sci. Lett., 235(3–4), 641–653. https://doi.org/10.1016/j.jpgl.2005.04.034

Sun, J. M., and Zhang, Z. Q. (2008). Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Global Planet. Change, 64(1-2), 53–68. https://doi.org/10.1016/j.gloplacha.2008.09.001

Turco, E., Hilgen, F. J., Lourens, L. J., Shackleton, N. J., and Zachariasse, W. J. (2001). Punctuated evolution of global climate cooling during the Late Middle to Early Late Miocene: High-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography, 16(4), 405–423. https://doi.org/10.1029/2000PA000509

Van der Woerd, J., Xu, X. W., Li, H. B., Tapponnier, P., Meyer, B., Ryerson, F. J., Meriaux, A. S., and Xu, Z. Q. (2001). Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China). J. Geophys. Res. Solid Earth, 106(B12), 30475–30504. https://doi.org/10.1029/2001JB000583

Verosub, K. L., Fine, P., Singer, M. J., and TenPas, J. (1993). Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21(11), 1011–1014. https://doi.org/10.1130/0091-7613(1993)021<1011:PAPIOT>2.3.CO;2

Wan, S. M., Kürschner, W. M., Clift, P. D., Li, A. C., and Li, T. G. (2009). Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea. Geophys. Res. Lett., 36(19), L19706. https://doi.org/10.1029/2009GL040279

Wang, C. S., Dai, J. G., Zhao, X. X., Li, Y. L., Graham, S. A., He, D. F., Ran, B., and Meng, J. (2014). Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621, 1–43. https://doi.org/10.1016/j.tecto.2014.01.036

Wang, X. M., Wang, B. Y., Qiu, Z. X., Xie, G. P., Xie, J. Y., Downs, W., Qiu, Z. D., and Deng, T. (2003). Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth Planet. Sci. Lett., 208(3-4), 253–269. https://doi.org/10.1016/S0012-821X(03)00047-5

Wright, J. D., Miller, K. G., and Fairbanks, R. G. (1992). Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paleoceanography, 7(3), 357–389. https://doi.org/10.1029/92PA00760

Yamazaki, T., and Ioka, N. (1997). Environmental rock-magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene. Paleoceanography, 12(1), 111–124. https://doi.org/10.1029/96PA02757

Yin, A., Rumelhart, P. E., Butler, R., Cowgill, E., Harrison, T. M., Foster, D. A., Ingersoll, R. V., Zhang, Q., Zhou, X. Q., … Raza, A. (2002). Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. GSA Bull., 114(10), 1257–1295. https://doi.org/10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412

Zachos, J. C., Dickens, G. R., and Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176), 279–283. https://doi.org/10.1038/nature06588

Zan, J. B., Fang, X. M., Yan, M. D., Zhang, W. L., and Lu, Y. (2015). Lithologic and rock magnetic evidence for the Mid-Miocene Climatic Optimum recorded in the sedimentary archive of the Xining Basin, NE Tibetan Plateau. Palaeogeogr., Palaeoclimatol., Palaeoecol., 431, 6–14. https://doi.org/10.1016/j.palaeo.2015.04.024

Zan, J. B., Kang, J., Yan, M. D., Fang, X. M., Li, X. J., Guan, C., Zhang, W. L., and Fang, Y. H. (2018). A pedogenic model for the magnetic enhancement of late miocene fluvial-lacustrine sediments from the Xining Basin, NE Tibetan Plateau. J. Geophys. Res. Solid Earth, 123(8), 6176–6194. https://doi.org/10.1029/2018JB016064

Zhang, T., Han, W. X., Fang, X. M., Zhang, W. L., Song, C. H., and Yan, M. D. (2016). Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau. Global Planet. Change, 137, 54–68. https://doi.org/10.1016/j.gloplacha.2015.12.017

Zhou, L. P., Oldfield, F., Wintle, A. G., Robinson, S. G., and Wang, J. T. (1990). Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346(6286), 737–739. https://doi.org/10.1038/346737a0

Zhuang, G. S., Hourigan, J. K., Ritts, B. D., and Kent-Corson, M. L. (2011). Cenozoic multiple-phase tectonic evolution of the Northern Tibetan Plateau: Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. Am. J. Sci., 311(2), 116–152. https://doi.org/10.2475/02.2011.02

Zhuang, G. S., Brandon, M. T., Pagani, M., and Krishnan, S. (2014). Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet. Sci. Lett., 390, 186–198. https://doi.org/10.1016/j.jpgl.2014.01.003

[1]

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027

[2]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[3]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[4]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[5]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[6]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[7]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

[8]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao